Nanoscale dosimetric consequences around bismuth, gold, gadolinium, hafnium, and iridium nanoparticles irradiated by low energy photons

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
A. Mesbahi, E. Mansouri, M. Mohammadzadeh
{"title":"Nanoscale dosimetric consequences around bismuth, gold, gadolinium, hafnium, and iridium nanoparticles irradiated by low energy photons","authors":"A. Mesbahi, E. Mansouri, M. Mohammadzadeh","doi":"10.2478/pjmpe-2020-0027","DOIUrl":null,"url":null,"abstract":"Abstract In the current study, nanoscale physical dose distributions around five potential nanoparticles were compared. Five potential nanoparticles including bismuth, gold, gadolinium, hafnium, and iridium nanoparticles in the form of a sphere with a diameter of 50 nm were simulated in a water medium. The MCNPX (2.7.0) Monte Carlo code with updated libraries was used for calculations of electron dose deposition and electron flux in water from 25 nm up to 4000 nm with a step of 25 nm. Also, secondary electron spectra after irradiation of nanoparticles with mono-energetic photons with energies of 30, 60, 100 keV were derived. The nano-scale distance-dose curves showed a very steep gradient with distance from nanoparticle surface up to 60 nm and after this point, a gradual decrease was seen. The dose deposition characteristics in the nano-scale were dependent on the type of nanoparticle as well as photon energy. Our results concluded that for each photon energy in the energy range of 30-100 keV, a suitable nanoparticle can be selected to boost the effect of energy deposition by low energy photon beams used in brachytherapy.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"11 1","pages":"225 - 234"},"PeriodicalIF":0.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Medical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjmpe-2020-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In the current study, nanoscale physical dose distributions around five potential nanoparticles were compared. Five potential nanoparticles including bismuth, gold, gadolinium, hafnium, and iridium nanoparticles in the form of a sphere with a diameter of 50 nm were simulated in a water medium. The MCNPX (2.7.0) Monte Carlo code with updated libraries was used for calculations of electron dose deposition and electron flux in water from 25 nm up to 4000 nm with a step of 25 nm. Also, secondary electron spectra after irradiation of nanoparticles with mono-energetic photons with energies of 30, 60, 100 keV were derived. The nano-scale distance-dose curves showed a very steep gradient with distance from nanoparticle surface up to 60 nm and after this point, a gradual decrease was seen. The dose deposition characteristics in the nano-scale were dependent on the type of nanoparticle as well as photon energy. Our results concluded that for each photon energy in the energy range of 30-100 keV, a suitable nanoparticle can be selected to boost the effect of energy deposition by low energy photon beams used in brachytherapy.
低能量光子照射下铋、金、钆、铪和铱纳米粒子的纳米剂量学影响
摘要本研究比较了五种潜在纳米粒子的纳米尺度物理剂量分布。在水介质中模拟了五种潜在的纳米粒子,包括铋、金、钆、铪和铱纳米粒子,它们以直径为50纳米的球体形式存在。利用MCNPX(2.7.0)蒙特卡罗代码,更新了库,计算了水中从25 nm到4000 nm的电子剂量沉积和电子通量,步长为25 nm。同时,得到了30、60、100 keV单能光子辐照纳米粒子后的二次电子能谱。纳米尺度的距离-剂量曲线在距离纳米粒子表面60 nm以内呈现非常陡峭的梯度,在此之后,剂量曲线逐渐减小。纳米尺度下的剂量沉积特性取决于纳米粒子的类型和光子能量。我们的研究结果表明,对于30-100 keV能量范围内的每个光子能量,可以选择合适的纳米颗粒来提高近距离治疗中低能光子束的能量沉积效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polish Journal of Medical Physics and Engineering
Polish Journal of Medical Physics and Engineering RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.30
自引率
0.00%
发文量
19
期刊介绍: Polish Journal of Medical Physics and Engineering (PJMPE) (Online ISSN: 1898-0309; Print ISSN: 1425-4689) is an official publication of the Polish Society of Medical Physics. It is a peer-reviewed, open access scientific journal with no publication fees. The issues are published quarterly online. The Journal publishes original contribution in medical physics and biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信