{"title":"Spatiotemporal ETAS model with a renewal main-shock arrival process","authors":"Tom Stindl, Feng Chen","doi":"10.1111/rssc.12579","DOIUrl":null,"url":null,"abstract":"<p>We propose a spatiotemporal point process model that enhances the classical Epidemic-Type Aftershock Sequence (ETAS) model. This is achieved with the introduction of a renewal main-shock arrival process and we call this extension the renewal ETAS (RETAS) model. This modification is similar in spirit to the renewal Hawkes (RHawkes) process but the conditional intensity process supports a spatial component. It empowers the main-shock intensity to reset upon the arrival of main-shocks. This allows for heavier clustering of main-shocks than the classical spatiotemporal ETAS model. We introduce a likelihood evaluation algorithm for parameter estimation and provide a novel procedure to evaluate the fitted model's goodness-of-fit (GOF) based on a sequential application of the Rosenblatt transformation. A simulation algorithm for the RETAS model is outlined and used to validate the numerical performance of the likelihood evaluation algorithm and GOF test procedure. We illustrate the proposed model and methods on various earthquake catalogues around the world each with distinctly different seismic activity. These catalogues demonstrate the RETAS model's additional flexibility in comparison to the classical spatiotemporal ETAS model and emphasizes the potential for superior modelling and forecasting of seismicity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12579","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12579","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
We propose a spatiotemporal point process model that enhances the classical Epidemic-Type Aftershock Sequence (ETAS) model. This is achieved with the introduction of a renewal main-shock arrival process and we call this extension the renewal ETAS (RETAS) model. This modification is similar in spirit to the renewal Hawkes (RHawkes) process but the conditional intensity process supports a spatial component. It empowers the main-shock intensity to reset upon the arrival of main-shocks. This allows for heavier clustering of main-shocks than the classical spatiotemporal ETAS model. We introduce a likelihood evaluation algorithm for parameter estimation and provide a novel procedure to evaluate the fitted model's goodness-of-fit (GOF) based on a sequential application of the Rosenblatt transformation. A simulation algorithm for the RETAS model is outlined and used to validate the numerical performance of the likelihood evaluation algorithm and GOF test procedure. We illustrate the proposed model and methods on various earthquake catalogues around the world each with distinctly different seismic activity. These catalogues demonstrate the RETAS model's additional flexibility in comparison to the classical spatiotemporal ETAS model and emphasizes the potential for superior modelling and forecasting of seismicity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.