Cozy: synthesizing collection data structures

Calvin Loncaric
{"title":"Cozy: synthesizing collection data structures","authors":"Calvin Loncaric","doi":"10.1145/2950290.2986032","DOIUrl":null,"url":null,"abstract":"Many applications require specialized data structures not found in standard libraries. Implementing new data structures by hand is tedious and error-prone. To alleviate this difficulty, we built a tool called Cozy that synthesizes data structures using counter-example guided inductive synthesis. We evaluate Cozy by showing how its synthesized implementations compare to handwritten implementations in terms of correctness and performance across four real-world programs. Cozy's data structures match the performance of the handwritten implementations while avoiding human error.","PeriodicalId":20532,"journal":{"name":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"170 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950290.2986032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many applications require specialized data structures not found in standard libraries. Implementing new data structures by hand is tedious and error-prone. To alleviate this difficulty, we built a tool called Cozy that synthesizes data structures using counter-example guided inductive synthesis. We evaluate Cozy by showing how its synthesized implementations compare to handwritten implementations in terms of correctness and performance across four real-world programs. Cozy's data structures match the performance of the handwritten implementations while avoiding human error.
舒适:合成集合数据结构
许多应用程序需要在标准库中找不到的专用数据结构。手工实现新的数据结构既繁琐又容易出错。为了减轻这个困难,我们构建了一个名为Cozy的工具,它使用反例引导归纳合成来合成数据结构。我们通过在四个实际程序中展示其合成实现与手写实现在正确性和性能方面的比较来评估Cozy。Cozy的数据结构与手写实现的性能相匹配,同时避免了人为错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信