GPU-Based Static Data-Flow Analysis for Fast and Scalable Android App Vetting

Xiaodong Yu, Fengguo Wei, Xinming Ou, M. Becchi, Tekin Bicer, D. Yao
{"title":"GPU-Based Static Data-Flow Analysis for Fast and Scalable Android App Vetting","authors":"Xiaodong Yu, Fengguo Wei, Xinming Ou, M. Becchi, Tekin Bicer, D. Yao","doi":"10.1109/IPDPS47924.2020.00037","DOIUrl":null,"url":null,"abstract":"Many popular vetting tools for Android applications use static code analysis techniques. In particular, Interprocedural Data-Flow Graph (IDFG) construction is the computation at the core of Android static data-flow analysis and consumes most of the analysis time. Many analysis tools use a worklist algorithm, an iterative fixed-point approach, to construct the IDFG. In this paper, we observe that a straightforward GPU parallelization of the worklist algorithm leads to significant underutilization of the GPU resources. We identify four performance bottlenecks, namely, frequent dynamic memory allocations, high branch divergence, workload imbalance, and irregular memory access patterns. Accordingly, we propose GDroid, a GPU-based worklist algorithm implementation with multiple fine-grained optimizations tailored to common characteristics of Android applications. The optimizations considered are: matrix-based data structure, memory access-based node grouping, and worklist merging. Our experimental evaluation, performed on 1000 Android applications, shows that the proposed optimizations are beneficial to performance, and GDroid can achieve up to 128X speedups against a plain GPU implementation.","PeriodicalId":6805,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"131 1","pages":"274-284"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS47924.2020.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Many popular vetting tools for Android applications use static code analysis techniques. In particular, Interprocedural Data-Flow Graph (IDFG) construction is the computation at the core of Android static data-flow analysis and consumes most of the analysis time. Many analysis tools use a worklist algorithm, an iterative fixed-point approach, to construct the IDFG. In this paper, we observe that a straightforward GPU parallelization of the worklist algorithm leads to significant underutilization of the GPU resources. We identify four performance bottlenecks, namely, frequent dynamic memory allocations, high branch divergence, workload imbalance, and irregular memory access patterns. Accordingly, we propose GDroid, a GPU-based worklist algorithm implementation with multiple fine-grained optimizations tailored to common characteristics of Android applications. The optimizations considered are: matrix-based data structure, memory access-based node grouping, and worklist merging. Our experimental evaluation, performed on 1000 Android applications, shows that the proposed optimizations are beneficial to performance, and GDroid can achieve up to 128X speedups against a plain GPU implementation.
基于gpu的静态数据流分析用于快速和可扩展的Android应用审查
许多流行的Android应用程序审查工具都使用静态代码分析技术。其中,构建过程间数据流图(Interprocedural Data-Flow Graph, IDFG)是Android静态数据流分析的核心计算部分,占用了大部分的分析时间。许多分析工具使用工作列表算法(迭代不动点方法)来构建IDFG。在本文中,我们观察到工作列表算法的直接GPU并行化导致GPU资源的显着利用率不足。我们确定了四个性能瓶颈,即频繁的动态内存分配、高分支分歧、工作负载不平衡和不规则的内存访问模式。因此,我们提出了GDroid,这是一种基于gpu的工作列表算法实现,具有针对Android应用程序共同特征量身定制的多个细粒度优化。考虑的优化包括:基于矩阵的数据结构、基于内存访问的节点分组和工作列表合并。我们在1000个Android应用程序上进行的实验评估表明,所提出的优化对性能有益,GDroid与普通GPU实现相比可以实现高达128倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信