Stationary states of the one-dimensional facilitated asymmetric exclusion process

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Arvind Ayyer, S. Goldstein, J. Lebowitz, E. Speer
{"title":"Stationary states of the one-dimensional facilitated asymmetric exclusion process","authors":"Arvind Ayyer, S. Goldstein, J. Lebowitz, E. Speer","doi":"10.1214/22-AIHP1264","DOIUrl":null,"url":null,"abstract":"We describe the translation invariant stationary states (TIS) of the one-dimensional facilitated asymmetric exclusion process in continuous time, in which a particle at site $i\\in\\mathbb{Z}$ jumps to site $i+1$ (respectively $i-1$) with rate $p$ (resp. $1-p$), provided that site $i-1$ (resp. $i+1$) is occupied and site $i+1$ (resp. $i-1$) is empty. All TIS states with density $\\rho\\le1/2$ are supported on trapped configurations in which no two adjacent sites are occupied; we prove that if in this case the initial state is Bernoulli then the final state is independent of $p$. This independence also holds for the system on a finite ring. For $\\rho>1/2$ there is only one TIS. It is the infinite volume limit of the probability distribution that gives uniform weight to all configurations in which no two holes are adjacent, and is isomorphic to the Gibbs measure for hard core particles with nearest neighbor exclusion.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-AIHP1264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 6

Abstract

We describe the translation invariant stationary states (TIS) of the one-dimensional facilitated asymmetric exclusion process in continuous time, in which a particle at site $i\in\mathbb{Z}$ jumps to site $i+1$ (respectively $i-1$) with rate $p$ (resp. $1-p$), provided that site $i-1$ (resp. $i+1$) is occupied and site $i+1$ (resp. $i-1$) is empty. All TIS states with density $\rho\le1/2$ are supported on trapped configurations in which no two adjacent sites are occupied; we prove that if in this case the initial state is Bernoulli then the final state is independent of $p$. This independence also holds for the system on a finite ring. For $\rho>1/2$ there is only one TIS. It is the infinite volume limit of the probability distribution that gives uniform weight to all configurations in which no two holes are adjacent, and is isomorphic to the Gibbs measure for hard core particles with nearest neighbor exclusion.
一维的定态促进了不对称排斥过程
我们描述了连续时间一维易化不对称不相容过程的平移不变平稳状态(TIS),其中位置$i\in\mathbb{Z}$的粒子以速度$p$(分别为$i-1$)跃迁到位置$i+1$(分别为)。$1-p$),前提是网站$i-1$(参见:($i+1$)已被占用,而网站$i+1$ (resp。$i-1$)是空的。密度为$\rho\le1/2$的所有TIS状态都支持在没有两个相邻站点被占用的捕获构型上;我们证明如果在这种情况下初始态是伯努利态那么最终态与$p$无关。这种独立性也适用于有限环上的系统。对于$\rho>1/2$,只有一个TIS。它是概率分布的无限体积极限,在没有两个孔相邻的所有构型中给予均匀的权重,并且与具有最近邻不相容的硬核粒子的吉布斯测量同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信