Roles of the Hydrophobic Tail Groups on the Properties of CO2-Switchable Surfactants

Q. Hou, Qi Wu, Yan Xu, Xiaobo Zheng, Yujun Zhao, Yuanyuan Wang, Guo Donghong, Xingguang Xu
{"title":"Roles of the Hydrophobic Tail Groups on the Properties of CO2-Switchable Surfactants","authors":"Q. Hou, Qi Wu, Yan Xu, Xiaobo Zheng, Yujun Zhao, Yuanyuan Wang, Guo Donghong, Xingguang Xu","doi":"10.2118/193628-MS","DOIUrl":null,"url":null,"abstract":"\n Switchable surfactants can be reversibly converted between surface active and inactive forms by induced triggers including pH, ozone, ultraviolet light, CO2, N2 and heat. Examples of the CO2 triggered switchable surfactants are guanidines, imidazoles and amidines. In a typical process using CO2 triggered switchable surfactants, an emulsion originating from two immiscible phases is stabilized when CO2 is introduced. Afterwards, the emulsion is flushed by N2 or air, resulting in the destabilization and phase separation. These distinctive properties of the switchable surfactants make them appealing chemicals in the transportation and recovery of the crude oil. N'-alkyl-N, N- dimethylacetamidine bicarbonates, as a CO2-triggered switchable surfactant, has been reported in stabilizing the light crude oil (Lu 2014). However, the influence of hydrophobic tail groups on the properties of CO2-switchable surfactants in the protonation and emulsification has not yet been well elucidated. In this work, a series of acetamidines with differing hydrophobic tail group were synthesized, and the synthesis conditions were optimized. The effect of the hydrophobic tail group on the conductivity and emulsion stability were also investigated in details. All the acetamidines presented an excellent switchable property in the conductivity test. Compared to the surfactant with shorter hydrophobic tail group, the acetamidine bicarbonate with longer hydrophobic tail group presented a faster deprotonation rate during bubbling N2. Shorter hydrophobic tail group was beneficial to the protonation of the acetamidines in the presence of CO2, resulting in the formation of hydrophilic bicarbonates compound. However, these bicarbonates with shorter hydrophobic groups were more difficult in deprotonation during the bubbling N2 stage. To examine the emulsifying ability of N'-alkyl-N,N-dimethylacetamidines with different hydrophobic tail groups, emulsifying experiments were conducted at 30°C using a mixture of oil-water containing as synthesized acetamidines (0.1%wt.). The mixture of dodecane-water formed an emulsion after bubbling CO2. The variation in phase separation should be ascribed to the different length of hydrophobic groups of these acetamidines. This revealed the correlation between tail group carbon numbers and hydrophobicity.","PeriodicalId":10983,"journal":{"name":"Day 1 Mon, April 08, 2019","volume":"152 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, April 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193628-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Switchable surfactants can be reversibly converted between surface active and inactive forms by induced triggers including pH, ozone, ultraviolet light, CO2, N2 and heat. Examples of the CO2 triggered switchable surfactants are guanidines, imidazoles and amidines. In a typical process using CO2 triggered switchable surfactants, an emulsion originating from two immiscible phases is stabilized when CO2 is introduced. Afterwards, the emulsion is flushed by N2 or air, resulting in the destabilization and phase separation. These distinctive properties of the switchable surfactants make them appealing chemicals in the transportation and recovery of the crude oil. N'-alkyl-N, N- dimethylacetamidine bicarbonates, as a CO2-triggered switchable surfactant, has been reported in stabilizing the light crude oil (Lu 2014). However, the influence of hydrophobic tail groups on the properties of CO2-switchable surfactants in the protonation and emulsification has not yet been well elucidated. In this work, a series of acetamidines with differing hydrophobic tail group were synthesized, and the synthesis conditions were optimized. The effect of the hydrophobic tail group on the conductivity and emulsion stability were also investigated in details. All the acetamidines presented an excellent switchable property in the conductivity test. Compared to the surfactant with shorter hydrophobic tail group, the acetamidine bicarbonate with longer hydrophobic tail group presented a faster deprotonation rate during bubbling N2. Shorter hydrophobic tail group was beneficial to the protonation of the acetamidines in the presence of CO2, resulting in the formation of hydrophilic bicarbonates compound. However, these bicarbonates with shorter hydrophobic groups were more difficult in deprotonation during the bubbling N2 stage. To examine the emulsifying ability of N'-alkyl-N,N-dimethylacetamidines with different hydrophobic tail groups, emulsifying experiments were conducted at 30°C using a mixture of oil-water containing as synthesized acetamidines (0.1%wt.). The mixture of dodecane-water formed an emulsion after bubbling CO2. The variation in phase separation should be ascribed to the different length of hydrophobic groups of these acetamidines. This revealed the correlation between tail group carbon numbers and hydrophobicity.
疏水尾基对co2可切换表面活性剂性能的影响
可切换表面活性剂可以在pH值、臭氧、紫外线、CO2、N2和热量等诱发因素的作用下,在表面活性和非活性形态之间进行可逆转换。二氧化碳触发的可切换表面活性剂有胍类、咪唑类和脒类。在使用CO2触发的可切换表面活性剂的典型工艺中,当引入CO2时,源自两种不混相的乳液会稳定下来。然后,用氮气或空气冲洗乳状液,导致失稳和相分离。这些可切换表面活性剂的独特性质使它们成为原油运输和回收中极具吸引力的化学物质。N'-烷基-N, N-二甲基乙脒碳酸氢盐作为一种二氧化碳触发的可切换表面活性剂,已被报道用于稳定轻质原油(Lu 2014)。然而,疏水尾基对co2可切换表面活性剂在质子化和乳化过程中性能的影响尚未得到很好的阐明。本文合成了一系列具有不同疏水尾基的乙酰脒,并对合成条件进行了优化。研究了疏水尾基团对乳液电导率和乳液稳定性的影响。在电导率测试中,所有对乙酰氨基化合物均表现出优异的可切换性。与疏水尾基较短的表面活性剂相比,疏水尾基较长的碳酸盐乙脒在鼓泡N2过程中脱质子速率更快。较短的疏水尾基团有利于乙酰脒在CO2存在下的质子化,形成亲水性碳酸氢盐化合物。而疏水基团较短的碳酸盐在鼓泡N2阶段更难脱质子。为考察具有不同疏水尾基的N′-烷基-N,N-二甲基乙酰脒的乳化能力,在30℃条件下,以含油水的混合物(0.1%wt.)作为合成乙酰脒的乳化实验。十二烷-水的混合物在CO2鼓泡后形成乳化液。相分离的变化应归因于这些对乙酰氨基的疏水性基团的长度不同。这揭示了尾基碳数与疏水性之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信