{"title":"Numerical analysis of the crack behavior interface-fiber: interfacial crack","authors":"R. Sara, S. Boualem","doi":"10.15406/mseij.2019.03.00107","DOIUrl":null,"url":null,"abstract":"The use of composite materials in industrial applications has been increasing for several years, and this in all industries: automotive, aeronautics, space, marine, railway or even sports, medical and nuclear. The performances in terms of mass gain, mechanical properties and manufacturing offer many possibilities of applications, sometimes very complex. Research activities specific to these materials are also very present in laboratories around the world to better understand the behavior of composite structures across many topics of study, with the aim of improving their uses and their adequacy with the industrial application. The joining of ceramics to metals is inherently difficult because of their distinctly different properties. But considerable efforts have devoted to the development of joining technologies during recent past years have led to significant successes.1 Dissimilar materials had to join together in many technical areas. One example of the ceramic to metal joint is to combine the wear resistance, high temperature strength and thermal or electrical resistance of the ceramic with the ductility of the metal. Due to the difference of the elastic properties and the thermal expansion coefficients of the ceramic and metal the high stresses occur at the intersection of edges and the interface of the joint under mechanical or thermal loading.2","PeriodicalId":18241,"journal":{"name":"Material Science & Engineering International Journal","volume":"152 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science & Engineering International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/mseij.2019.03.00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The use of composite materials in industrial applications has been increasing for several years, and this in all industries: automotive, aeronautics, space, marine, railway or even sports, medical and nuclear. The performances in terms of mass gain, mechanical properties and manufacturing offer many possibilities of applications, sometimes very complex. Research activities specific to these materials are also very present in laboratories around the world to better understand the behavior of composite structures across many topics of study, with the aim of improving their uses and their adequacy with the industrial application. The joining of ceramics to metals is inherently difficult because of their distinctly different properties. But considerable efforts have devoted to the development of joining technologies during recent past years have led to significant successes.1 Dissimilar materials had to join together in many technical areas. One example of the ceramic to metal joint is to combine the wear resistance, high temperature strength and thermal or electrical resistance of the ceramic with the ductility of the metal. Due to the difference of the elastic properties and the thermal expansion coefficients of the ceramic and metal the high stresses occur at the intersection of edges and the interface of the joint under mechanical or thermal loading.2