On the speed of convergence of Picard iterations of backward stochastic differential equations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Martin Hutzenthaler, T. Kruse, T. Nguyen
{"title":"On the speed of convergence of Picard iterations of backward stochastic differential equations","authors":"Martin Hutzenthaler, T. Kruse, T. Nguyen","doi":"10.3934/puqr.2022009","DOIUrl":null,"url":null,"abstract":"It is a well-established fact in the scientific literature that Picard iterations of backward stochastic differential equations with globally Lipschitz continuous nonlinearity converge at least exponentially fast to the solution. In this paper we prove that this convergence is in fact at least square-root factorially fast. We show for one example that no higher convergence speed is possible in general. Moreover, if the nonlinearity is z -independent, then the convergence is even factorially fast. Thus we reveal a phase transition in the speed of convergence of Picard iterations of backward stochastic differential equations. differential equation, Picard iteration, a priori estimate, semilinear parabolic partial differential equation","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/puqr.2022009","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

It is a well-established fact in the scientific literature that Picard iterations of backward stochastic differential equations with globally Lipschitz continuous nonlinearity converge at least exponentially fast to the solution. In this paper we prove that this convergence is in fact at least square-root factorially fast. We show for one example that no higher convergence speed is possible in general. Moreover, if the nonlinearity is z -independent, then the convergence is even factorially fast. Thus we reveal a phase transition in the speed of convergence of Picard iterations of backward stochastic differential equations. differential equation, Picard iteration, a priori estimate, semilinear parabolic partial differential equation
后向随机微分方程皮卡德迭代的收敛速度
在科学文献中,具有全局Lipschitz连续非线性的倒向随机微分方程的Picard迭代至少以指数速度收敛到解。在本文中,我们证明了这种收敛实际上至少是根号阶乘快。我们通过一个例子证明,一般情况下没有更高的收敛速度。此外,如果非线性与z无关,则收敛速度甚至是阶乘快。从而揭示了倒向随机微分方程皮卡德迭代收敛速度的相变。微分方程,皮卡德迭代,先验估计,半线性抛物型偏微分方程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信