{"title":"Predictive Modeling of Stress in the Healthcare Industry During COVID-19: A Novel Approach Using XGBoost, SHAP Values, and Tree Explainer","authors":"Pooja Gupta, Srabanti Maji, Ritika Mehra","doi":"10.4018/ijdsst.315758","DOIUrl":null,"url":null,"abstract":"There was a substantial medicine shortage and an increase in morbidity due to the second wave of the COVID-19 pandemic in India. This pandemic has also had a drastic impact on healthcare professionals' psychological health as they were surrounded by suffering, death, and isolation. Healthcare practitioners in North India were sent a self-administered questionnaire based on the COVID-19 Stress Scale (N = 436) from March to May 2021. With 10-fold cross-validation, extreme gradient boosting (XGBoost) was used to predict the individual stress levels. XGBoost classifier was applied, and classification accuracy was 88%. The results of this research show that approximately 52.6% of healthcare specialists in the dataset exceed the severe psychiatric morbidity standards. Further, to determine which attribute had a significant impact on stress prediction, advanced techniques (SHAP values), and tree explainer were applied. The two most significant stress predictors were found to be medicine shortage and trouble in concentrating.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":"191 1","pages":"1-20"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.315758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
There was a substantial medicine shortage and an increase in morbidity due to the second wave of the COVID-19 pandemic in India. This pandemic has also had a drastic impact on healthcare professionals' psychological health as they were surrounded by suffering, death, and isolation. Healthcare practitioners in North India were sent a self-administered questionnaire based on the COVID-19 Stress Scale (N = 436) from March to May 2021. With 10-fold cross-validation, extreme gradient boosting (XGBoost) was used to predict the individual stress levels. XGBoost classifier was applied, and classification accuracy was 88%. The results of this research show that approximately 52.6% of healthcare specialists in the dataset exceed the severe psychiatric morbidity standards. Further, to determine which attribute had a significant impact on stress prediction, advanced techniques (SHAP values), and tree explainer were applied. The two most significant stress predictors were found to be medicine shortage and trouble in concentrating.