A new family of high-order difference schemes for the solution of second order boundary value problems

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
Morteza Bisheh-Niasar, A. Saadatmandi, M. Akrami-Arani
{"title":"A new family of high-order difference schemes for the solution of second order boundary value problems","authors":"Morteza Bisheh-Niasar, A. Saadatmandi, M. Akrami-Arani","doi":"10.22052/IJMC.2018.94933.1306","DOIUrl":null,"url":null,"abstract":"Many problems in chemistry, nanotechnology, biology, natural science, chemical physics and engineering are modeled by two point boundary value problems. In general, analytical solution of these problems does not exist. In this paper, we propose a new class of high-order accurate methods for solving special second order nonlinear two point boundary value problems. Local truncation errors of these methods are discussed. To illustrate the potential of the new methods, we apply them for solving some well-known problems, including Troesch’s problem, Bratu’s problem and certain singularly perturbed problem. Bratu’s problem and Troech’s problems, may be used to model some chemical reaction-diffusion and heat transfer processes. We also compare the results of this work with some existing results in the literature and show that the new methods are efficient and applicable.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2018.94933.1306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Many problems in chemistry, nanotechnology, biology, natural science, chemical physics and engineering are modeled by two point boundary value problems. In general, analytical solution of these problems does not exist. In this paper, we propose a new class of high-order accurate methods for solving special second order nonlinear two point boundary value problems. Local truncation errors of these methods are discussed. To illustrate the potential of the new methods, we apply them for solving some well-known problems, including Troesch’s problem, Bratu’s problem and certain singularly perturbed problem. Bratu’s problem and Troech’s problems, may be used to model some chemical reaction-diffusion and heat transfer processes. We also compare the results of this work with some existing results in the literature and show that the new methods are efficient and applicable.
求解二阶边值问题的一类新的高阶差分格式
化学、纳米技术、生物学、自然科学、化学物理和工程中的许多问题都是用两点边值问题来建模的。一般来说,这些问题的解析解是不存在的。本文提出了一类新的求解特殊二阶非线性两点边值问题的高阶精确方法。讨论了这些方法的局部截断误差。为了说明新方法的潜力,我们将其应用于解决一些众所周知的问题,包括Troesch问题、Bratu问题和某些奇摄动问题。Bratu的问题和Troech的问题,可以用来模拟一些化学反应-扩散和传热过程。我们还将本工作的结果与文献中已有的一些结果进行了比较,表明新方法是有效和适用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信