A Matrix Decomposition Perspective to Multiple Graph Matching

Junchi Yan, Hongteng Xu, H. Zha, Xiaokang Yang, Huanxi Liu, Stephen M. Chu
{"title":"A Matrix Decomposition Perspective to Multiple Graph Matching","authors":"Junchi Yan, Hongteng Xu, H. Zha, Xiaokang Yang, Huanxi Liu, Stephen M. Chu","doi":"10.1109/ICCV.2015.31","DOIUrl":null,"url":null,"abstract":"Graph matching has a wide spectrum of real-world applications and in general is known NP-hard. In many vision tasks, one realistic problem arises for finding the global node mappings across a batch of corrupted weighted graphs. This paper is an attempt to connect graph matching, especially multi-graph matching to the matrix decomposition model and its relevant on-the-shelf convex optimization algorithms. Our method aims to extract the common inliers and their synchronized permutations from disordered weighted graphs in the presence of deformation and outliers. Under the proposed framework, several variants can be derived in the hope of accommodating to other types of noises. Experimental results on both synthetic data and real images empirically show that the proposed paradigm exhibits several interesting behaviors and in many cases performs competitively with the state-of-the-arts.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"115 1","pages":"199-207"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Graph matching has a wide spectrum of real-world applications and in general is known NP-hard. In many vision tasks, one realistic problem arises for finding the global node mappings across a batch of corrupted weighted graphs. This paper is an attempt to connect graph matching, especially multi-graph matching to the matrix decomposition model and its relevant on-the-shelf convex optimization algorithms. Our method aims to extract the common inliers and their synchronized permutations from disordered weighted graphs in the presence of deformation and outliers. Under the proposed framework, several variants can be derived in the hope of accommodating to other types of noises. Experimental results on both synthetic data and real images empirically show that the proposed paradigm exhibits several interesting behaviors and in many cases performs competitively with the state-of-the-arts.
从矩阵分解的角度看多图匹配
图匹配在现实世界中有着广泛的应用,通常被称为NP-hard。在许多视觉任务中,一个现实的问题是在一批损坏的加权图中寻找全局节点映射。本文试图将图匹配,特别是多图匹配与矩阵分解模型及其相关的现成凸优化算法联系起来。我们的方法旨在从存在变形和离群值的无序加权图中提取共同内线及其同步排列。在提出的框架下,可以推导出几种变体,以期适应其他类型的噪声。在合成数据和真实图像上的实验结果经验表明,所提出的范式表现出一些有趣的行为,并且在许多情况下与最先进的范式竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信