Influence of Joint Orientation on the Behavior of Dam Foundation Resting on Jointed Rock Mass Under Earthquake Loading Condition

IF 0.5 Q4 ENGINEERING, GEOLOGICAL
P. Halder, Saurabh Kumar, B. Manna, K. G. Sharma
{"title":"Influence of Joint Orientation on the Behavior of Dam Foundation Resting on Jointed Rock Mass Under Earthquake Loading Condition","authors":"P. Halder, Saurabh Kumar, B. Manna, K. G. Sharma","doi":"10.4018/IJGEE.2019010101","DOIUrl":null,"url":null,"abstract":"In this article, the effect of an intact rock foundation and foundations with different single rock joint inclinations (0°, 30°, 60°, 90°) on the dynamic response of the concrete gravity dam under strong earthquake ground motion is investigated. Discrete element analyses are carried out using UDEC to study the stress-deformation behavior of dam for two specific dynamic load combinations (LC), i.e. considering the dead weight of the dam having an empty reservoir with earthquake loading (LC-D) and considering the dead weight of the dam along with hydro-dynamic force with earthquake load (LC-E) as per IS: 6512. From the results, the compressive stresses are found maximum at the heel of the dam for LC-D and maximum at the toe for LC-E. The dam foundation with 60° joint inclination was found most critical in terms of possessing maximum compressive stresses among all other cases. Dam foundation with a horizontal (0°) set of joints exhibits maximum crest displacement and base sliding. Foundations with 60° and 90° joint sets are found to undergo lower base sliding compared to other joint sets.","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGEE.2019010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 4

Abstract

In this article, the effect of an intact rock foundation and foundations with different single rock joint inclinations (0°, 30°, 60°, 90°) on the dynamic response of the concrete gravity dam under strong earthquake ground motion is investigated. Discrete element analyses are carried out using UDEC to study the stress-deformation behavior of dam for two specific dynamic load combinations (LC), i.e. considering the dead weight of the dam having an empty reservoir with earthquake loading (LC-D) and considering the dead weight of the dam along with hydro-dynamic force with earthquake load (LC-E) as per IS: 6512. From the results, the compressive stresses are found maximum at the heel of the dam for LC-D and maximum at the toe for LC-E. The dam foundation with 60° joint inclination was found most critical in terms of possessing maximum compressive stresses among all other cases. Dam foundation with a horizontal (0°) set of joints exhibits maximum crest displacement and base sliding. Foundations with 60° and 90° joint sets are found to undergo lower base sliding compared to other joint sets.
地震荷载作用下节理方向对节理岩体坝基性能的影响
本文研究了完整岩石基础和不同单岩节理倾角(0°、30°、60°、90°)对混凝土重力坝在强震地震动下动力响应的影响。采用UDEC进行离散元分析,研究了两种特定动力荷载组合(LC)下大坝的应力变形行为,即考虑地震荷载下空水库大坝的自重(LC- d)和考虑地震荷载下大坝的自重和水动力(LC- e)。结果表明,LC-D坝的压应力在坝后跟处最大,LC-E坝的压应力在坝趾处最大。在所有情况中,节理倾角为60°的坝基具有最大压应力最为关键。具有水平(0°)节理的坝基表现出最大的坝顶位移和基底滑动。与其他节点组相比,60°和90°节点组的基础具有较低的基础滑动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
25.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信