An unoriented skein relation via bordered–sutured Floer homology

Pub Date : 2018-10-31 DOI:10.4310/jsg.2021.v19.n6.a4
D. Vela-Vick, C.-M. Michael Wong
{"title":"An unoriented skein relation via bordered–sutured Floer homology","authors":"D. Vela-Vick, C.-M. Michael Wong","doi":"10.4310/jsg.2021.v19.n6.a4","DOIUrl":null,"url":null,"abstract":"We show that the bordered-sutured Floer invariant of the complement of a tangle in an arbitrary 3-manifold $Y$, with minimal conditions on the bordered-sutured structure, satisfies an unoriented skein exact triangle. This generalizes a theorem by Manolescu for links in $S^3$. We give a theoretical proof of this result by adapting holomorphic polygon counts to the bordered-sutured setting, and also give a combinatorial description of all maps involved and explicitly compute them. We then show that, for $Y = S^3$, our exact triangle coincides with Manolescu's. Finally, we provide a graded version of our result, explaining in detail the grading reduction process involved.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2021.v19.n6.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the bordered-sutured Floer invariant of the complement of a tangle in an arbitrary 3-manifold $Y$, with minimal conditions on the bordered-sutured structure, satisfies an unoriented skein exact triangle. This generalizes a theorem by Manolescu for links in $S^3$. We give a theoretical proof of this result by adapting holomorphic polygon counts to the bordered-sutured setting, and also give a combinatorial description of all maps involved and explicitly compute them. We then show that, for $Y = S^3$, our exact triangle coincides with Manolescu's. Finally, we provide a graded version of our result, explaining in detail the grading reduction process involved.
分享
查看原文
通过有边缝合花同源的无取向绞结关系
我们证明了任意3流形$Y$中缠结补的有边缝合Floer不变量,在有边缝合结构的最小条件下,满足无方向缠结精确三角形。这推广了Manolescu关于S^3$中连杆的定理。我们通过将全纯多边形计数适应于边界缝合设置,给出了这一结果的理论证明,并给出了所涉及的所有映射的组合描述和显式计算。然后我们证明,对于Y = S^3,我们的三角形与Manolescu的恰好重合。最后,我们提供了我们的结果的分级版本,详细解释了所涉及的分级减少过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信