Pixel-Vernier: A General Image-Based Approach For Particle Size Distribution Estimation

Gamal H. Seedahmed, Andy L. Ward
{"title":"Pixel-Vernier: A General Image-Based Approach For Particle Size Distribution Estimation","authors":"Gamal H. Seedahmed, Andy L. Ward","doi":"10.53332/kuej.v4i1.1049","DOIUrl":null,"url":null,"abstract":"Particle size distribution estimation (PSDE) is a fundamental task for heterogeneous materials characterization and modeling. This paper presents a general image-based approach for PSDE, which is called collectively “Pixel-Vernier” or PV for short. Meaningful image segmentation is the main problem to be solved for image-based PSDE. To this end, the proposed approach combines markers-controlled watershed segmentation with a clustering algorithm to solve the delineation of the boundaries of the particles. The combined approach is embedded in a coarse-to-fine strategy using a one training parameter to adapt the algorithm to the underlying distributions of the particle size. This training parameter is restricted to the size of an averaging filter. PV decomposes the image into separate particle regions. The final results of these regions are used to compute several geometric attributes for particles such as the semi-major axis, the semi-minor axis, and the equivalent diameter. Then, the geometric attributes of all the particles are used to estimate size distribution and relevant statistics. PV can be used in a laboratory as well as in a field setting. It is tested successfully on a diverse set of images that represent materials like soils, texture, rocks, and Mars surface geology.","PeriodicalId":23461,"journal":{"name":"University of Khartoum Engineering Journal","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"University of Khartoum Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53332/kuej.v4i1.1049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Particle size distribution estimation (PSDE) is a fundamental task for heterogeneous materials characterization and modeling. This paper presents a general image-based approach for PSDE, which is called collectively “Pixel-Vernier” or PV for short. Meaningful image segmentation is the main problem to be solved for image-based PSDE. To this end, the proposed approach combines markers-controlled watershed segmentation with a clustering algorithm to solve the delineation of the boundaries of the particles. The combined approach is embedded in a coarse-to-fine strategy using a one training parameter to adapt the algorithm to the underlying distributions of the particle size. This training parameter is restricted to the size of an averaging filter. PV decomposes the image into separate particle regions. The final results of these regions are used to compute several geometric attributes for particles such as the semi-major axis, the semi-minor axis, and the equivalent diameter. Then, the geometric attributes of all the particles are used to estimate size distribution and relevant statistics. PV can be used in a laboratory as well as in a field setting. It is tested successfully on a diverse set of images that represent materials like soils, texture, rocks, and Mars surface geology.
像素游标:一种通用的基于图像的粒度分布估计方法
粒径分布估计(PSDE)是非均质材料表征和建模的基本任务。本文提出了一种通用的基于图像的PSDE方法,它被统称为“像素游标”或简称PV。有意义的图像分割是基于图像的PSDE需要解决的主要问题。为此,该方法将标记控制分水岭分割与聚类算法相结合,解决了粒子边界的划定问题。该组合方法嵌入到一个由粗到细的策略中,使用一个训练参数使算法适应粒度的潜在分布。这个训练参数受限于平均滤波器的大小。PV将图像分解为单独的粒子区域。这些区域的最终结果用于计算粒子的半长轴、半短轴和等效直径等几何属性。然后,利用所有颗粒的几何属性来估计颗粒的大小分布和相关统计。PV既可以在实验室使用,也可以在现场使用。它在一系列不同的图像上进行了成功的测试,这些图像代表了土壤、纹理、岩石和火星表面地质等材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信