M. Naderi, K. Chowdhury, S. Basagni, W. Heinzelman, S. De, S. Jana
{"title":"Experimental study of concurrent data and wireless energy transfer for sensor networks","authors":"M. Naderi, K. Chowdhury, S. Basagni, W. Heinzelman, S. De, S. Jana","doi":"10.1109/GLOCOM.2014.7037190","DOIUrl":null,"url":null,"abstract":"Wireless transfer of energy through directed radio frequency waves has the potential to realize perennially operating sensor nodes by replenishing the energy contained in the limited on-board battery. However, the high power energy transfer from energy transmitters (ETs) interferes with data communication, limiting the coexistence of these functions. This paper provides the first experimental study to quantify the rate of charging, packet loss due to interference, and suitable ranges for charging and data communication of the ETs. It also explores how the placement and relative distances of multiple ETs affect the charging process, demonstrating constructive and destructive energy aggregation at the sensor nodes. Finally, we investigate the impact of the separation in frequency between data and energy transmissions, as well as among multiple concurrent energy transmissions. Our results aim at providing insights on radio frequency-based energy harvesting wireless sensor networks for enhanced protocol design and network planning.","PeriodicalId":6492,"journal":{"name":"2014 IEEE Global Communications Conference","volume":"65 1","pages":"2543-2549"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2014.7037190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57
Abstract
Wireless transfer of energy through directed radio frequency waves has the potential to realize perennially operating sensor nodes by replenishing the energy contained in the limited on-board battery. However, the high power energy transfer from energy transmitters (ETs) interferes with data communication, limiting the coexistence of these functions. This paper provides the first experimental study to quantify the rate of charging, packet loss due to interference, and suitable ranges for charging and data communication of the ETs. It also explores how the placement and relative distances of multiple ETs affect the charging process, demonstrating constructive and destructive energy aggregation at the sensor nodes. Finally, we investigate the impact of the separation in frequency between data and energy transmissions, as well as among multiple concurrent energy transmissions. Our results aim at providing insights on radio frequency-based energy harvesting wireless sensor networks for enhanced protocol design and network planning.