Qianyun Zhang, Kaveh Barri, Pengcheng Jiao, Jochen Mueller, Zhong Lin Wang, Amir H. Alavi
{"title":"Self-powered electronic mechanical metamaterials","authors":"Qianyun Zhang, Kaveh Barri, Pengcheng Jiao, Jochen Mueller, Zhong Lin Wang, Amir H. Alavi","doi":"10.1117/12.2652258","DOIUrl":null,"url":null,"abstract":"Active mechanical metamaterials have shown a glimpse of their capacity to create the foundation for intelligent matter. This study presents the concept of mechanical metamaterial electronics (meta-mechanotronics) to design intelligent matter with information processing capability. This advanced functionality is achieved by fusing the mechanical metamaterials, digital electronics and nano energy harvesting technologies. Electronic mechanical metamaterials explored under the meta-mechanotronics paradigm rely merely on their constituent components to perform self-powered mechanical-electrical-logic operations. A proof-of-concept digital unit cell is presented as the 2-bit building block for electronic mechanical metamaterials. The digital unit cell is rationally designed as a monostable origami-inspired metamaterial with twist buckling behavior and specific multi-motion properties to synthesize discrete mechanical configurations and realize digital logic gates. Experimental studies are performed to evaluate the digital computing performance of the designed mechanical metamaterial logic gate.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"1 1","pages":"124830C - 124830C-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2652258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Active mechanical metamaterials have shown a glimpse of their capacity to create the foundation for intelligent matter. This study presents the concept of mechanical metamaterial electronics (meta-mechanotronics) to design intelligent matter with information processing capability. This advanced functionality is achieved by fusing the mechanical metamaterials, digital electronics and nano energy harvesting technologies. Electronic mechanical metamaterials explored under the meta-mechanotronics paradigm rely merely on their constituent components to perform self-powered mechanical-electrical-logic operations. A proof-of-concept digital unit cell is presented as the 2-bit building block for electronic mechanical metamaterials. The digital unit cell is rationally designed as a monostable origami-inspired metamaterial with twist buckling behavior and specific multi-motion properties to synthesize discrete mechanical configurations and realize digital logic gates. Experimental studies are performed to evaluate the digital computing performance of the designed mechanical metamaterial logic gate.