Some Generalizations of Relay Fusion Frames and F ,

IF 0.7 Q2 MATHEMATICS
Xiujiao Chi, G. Hong, Pengtong Li
{"title":"Some Generalizations of Relay Fusion Frames and <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>F</mi>\n <mo>,</mo>\n ","authors":"Xiujiao Chi, G. Hong, Pengtong Li","doi":"10.1155/2023/5920210","DOIUrl":null,"url":null,"abstract":"<jats:p>The relay fusion frame proposed by Hong and Li is an extension of a fusion frame that has many applications in science. In this study, we introduce relay fusion frames in Hilbert <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>-modules very naturally and shift some common attributes of fusion frames and relay fusion frames in Hilbert spaces to relay fusion frames in Hilbert <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>-modules. In addition, we generalize some perturbation results in frame theory to relay fusion frames in Hilbert <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>-modules. Finally, we introduce a class of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>F</mi>\n <mo>,</mo>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-relay fusion frames as a generalization of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>K</mi>\n </math>\n </jats:inline-formula>-frames and present some perturbation results for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>F</mi>\n <mo>,</mo>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-relay fusion frames in Hilbert <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>-modules.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"109 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5920210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The relay fusion frame proposed by Hong and Li is an extension of a fusion frame that has many applications in science. In this study, we introduce relay fusion frames in Hilbert C -modules very naturally and shift some common attributes of fusion frames and relay fusion frames in Hilbert spaces to relay fusion frames in Hilbert C -modules. In addition, we generalize some perturbation results in frame theory to relay fusion frames in Hilbert C -modules. Finally, we introduce a class of F , G -relay fusion frames as a generalization of K -frames and present some perturbation results for F , G -relay fusion frames in Hilbert C -modules.
继电熔合帧和F的一些推广
Hong和Li提出的中继融合框架是对融合框架的扩展,在科学上有许多应用。在这项研究中,我们很自然地在Hilbert C *模中引入了继电融合框架,并将Hilbert空间中的融合框架和继电融合框架的一些共同属性转移到Hilbert空间中的继电融合框架C * -模。此外,我们将框架理论中的一些微扰结果推广到Hilbert C * -模中的中继融合框架。最后,我们引入一类F,G -中继融合帧作为K -帧的推广,并给出了F的一些摄动结果。Hilbert C *模中的G -继电器熔合帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信