{"title":"Some Generalizations of Relay Fusion Frames and <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>F</mi>\n <mo>,</mo>\n ","authors":"Xiujiao Chi, G. Hong, Pengtong Li","doi":"10.1155/2023/5920210","DOIUrl":null,"url":null,"abstract":"<jats:p>The relay fusion frame proposed by Hong and Li is an extension of a fusion frame that has many applications in science. In this study, we introduce relay fusion frames in Hilbert <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>-modules very naturally and shift some common attributes of fusion frames and relay fusion frames in Hilbert spaces to relay fusion frames in Hilbert <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>-modules. In addition, we generalize some perturbation results in frame theory to relay fusion frames in Hilbert <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>-modules. Finally, we introduce a class of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>F</mi>\n <mo>,</mo>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-relay fusion frames as a generalization of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>K</mi>\n </math>\n </jats:inline-formula>-frames and present some perturbation results for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>F</mi>\n <mo>,</mo>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-relay fusion frames in Hilbert <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>-modules.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5920210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The relay fusion frame proposed by Hong and Li is an extension of a fusion frame that has many applications in science. In this study, we introduce relay fusion frames in Hilbert -modules very naturally and shift some common attributes of fusion frames and relay fusion frames in Hilbert spaces to relay fusion frames in Hilbert -modules. In addition, we generalize some perturbation results in frame theory to relay fusion frames in Hilbert -modules. Finally, we introduce a class of -relay fusion frames as a generalization of -frames and present some perturbation results for -relay fusion frames in Hilbert -modules.
Hong和Li提出的中继融合框架是对融合框架的扩展,在科学上有许多应用。在这项研究中,我们很自然地在Hilbert C *模中引入了继电融合框架,并将Hilbert空间中的融合框架和继电融合框架的一些共同属性转移到Hilbert空间中的继电融合框架C * -模。此外,我们将框架理论中的一些微扰结果推广到Hilbert C * -模中的中继融合框架。最后,我们引入一类F,G -中继融合帧作为K -帧的推广,并给出了F的一些摄动结果。Hilbert C *模中的G -继电器熔合帧。