{"title":"Глибинне навчання для аудіо-додатків","authors":"A. Логвін","doi":"10.36910/6775-2524-0560-2021-42-11","DOIUrl":null,"url":null,"abstract":"Розкрито принципи застосування глибокого навчання для нейронних мереж щодо розпізнавання аудіо-сигналів. Відокремлено області подання звуку. Підкреслено, що дослідження буде обмежено аудіо-сигналами. Описано принципи розбиття сигналу на складові елементи та їх вилучення із аудіо запису. Наведено схему формування розподілу аудіо-сигналу та запропоновано загальний підхід до задачі розпізнавання аудіо-сигналів. Він умовно поділений на три окремі етапи: обробка аудіо-запису та його перетворення у частотно-часову область, побудова спектрограми та її перетворення на формат з подальшим виведенням послідовності ознак у вигляді векторів. Визначений коефіцієнт накладання та середньозважений коефіцієнт перекриття (частковий збіг). Сформовано низку значень на основі проведеного експерименту, які показали, що на характеристики / параметри аудіо-додатків, сформовані за допомогою нейронної мережі з глибоким навчанням, має вплив метод підготовки даних, додавання шарів та формування спектру одиниць, що покращує результат за рахунок помноженого часу навчання, те саме стосується і періодичних з'єднань.","PeriodicalId":38688,"journal":{"name":"Journal of Computing and Information Technology","volume":"128 4 1","pages":"72-78"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36910/6775-2524-0560-2021-42-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Розкрито принципи застосування глибокого навчання для нейронних мереж щодо розпізнавання аудіо-сигналів. Відокремлено області подання звуку. Підкреслено, що дослідження буде обмежено аудіо-сигналами. Описано принципи розбиття сигналу на складові елементи та їх вилучення із аудіо запису. Наведено схему формування розподілу аудіо-сигналу та запропоновано загальний підхід до задачі розпізнавання аудіо-сигналів. Він умовно поділений на три окремі етапи: обробка аудіо-запису та його перетворення у частотно-часову область, побудова спектрограми та її перетворення на формат з подальшим виведенням послідовності ознак у вигляді векторів. Визначений коефіцієнт накладання та середньозважений коефіцієнт перекриття (частковий збіг). Сформовано низку значень на основі проведеного експерименту, які показали, що на характеристики / параметри аудіо-додатків, сформовані за допомогою нейронної мережі з глибоким навчанням, має вплив метод підготовки даних, додавання шарів та формування спектру одиниць, що покращує результат за рахунок помноженого часу навчання, те саме стосується і періодичних з'єднань.
期刊介绍:
CIT. Journal of Computing and Information Technology is an international peer-reviewed journal covering the area of computing and information technology, i.e. computer science, computer engineering, software engineering, information systems, and information technology. CIT endeavors to publish stimulating accounts of original scientific work, primarily including research papers on both theoretical and practical issues, as well as case studies describing the application and critical evaluation of theory. Surveys and state-of-the-art reports will be considered only exceptionally; proposals for such submissions should be sent to the Editorial Board for scrutiny. Specific areas of interest comprise, but are not restricted to, the following topics: theory of computing, design and analysis of algorithms, numerical and symbolic computing, scientific computing, artificial intelligence, image processing, pattern recognition, computer vision, embedded and real-time systems, operating systems, computer networking, Web technologies, distributed systems, human-computer interaction, technology enhanced learning, multimedia, database systems, data mining, machine learning, knowledge engineering, soft computing systems and network security, computational statistics, computational linguistics, and natural language processing. Special attention is paid to educational, social, legal and managerial aspects of computing and information technology. In this respect CIT fosters the exchange of ideas, experience and knowledge between regions with different technological and cultural background, and in particular developed and developing ones.