A Time-Parallel Framework for Coupling Finite Element and Lattice Boltzmann Methods

M. Astorino, F. Chouly, A. Quarteroni
{"title":"A Time-Parallel Framework for Coupling Finite Element and Lattice Boltzmann Methods","authors":"M. Astorino, F. Chouly, A. Quarteroni","doi":"10.1093/AMRX/ABV009","DOIUrl":null,"url":null,"abstract":"In this work we propose a new numerical procedure for the simulation of time-dependent problems based on the coupling between the finite element method and the lattice Boltzmann method. The procedure is based on the Parareal paradigm and allows to couple efficiently the two numerical methods, each one working with its own grid size and time-step size. The motivations behind this approach are manifold. Among others, we have that one technique may be more efficient, or physically more appropriate or less memory consuming than the other depending on the target of the simulation and/or on the sub-region of the computational domain. Furthermore, the coupling with finite element method may circumvent some difficulties inherent to lattice Boltzmann discretization, for some domains with complex boundaries, or for some boundary conditions. The theoretical and numerical framework is presented for parabolic equations, in order to describe and validate numerically the methodology in a simple situation.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"173 1","pages":"24-67"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABV009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this work we propose a new numerical procedure for the simulation of time-dependent problems based on the coupling between the finite element method and the lattice Boltzmann method. The procedure is based on the Parareal paradigm and allows to couple efficiently the two numerical methods, each one working with its own grid size and time-step size. The motivations behind this approach are manifold. Among others, we have that one technique may be more efficient, or physically more appropriate or less memory consuming than the other depending on the target of the simulation and/or on the sub-region of the computational domain. Furthermore, the coupling with finite element method may circumvent some difficulties inherent to lattice Boltzmann discretization, for some domains with complex boundaries, or for some boundary conditions. The theoretical and numerical framework is presented for parabolic equations, in order to describe and validate numerically the methodology in a simple situation.
有限元与晶格玻尔兹曼方法耦合的时间并行框架
在这项工作中,我们提出了一种新的基于有限元法和晶格玻尔兹曼法之间耦合的时间相关问题的数值模拟程序。该程序基于Parareal范式,允许有效地耦合两种数值方法,每一种方法都有自己的网格大小和时间步长。这种做法背后的动机是多方面的。其中,根据模拟的目标和/或计算域的子区域,我们认为一种技术可能比另一种技术更有效,或者物理上更合适,或者内存消耗更少。此外,对于一些具有复杂边界的域或某些边界条件,与有限元方法的耦合可以避免晶格玻尔兹曼离散所固有的一些困难。给出了抛物型方程的理论和数值框架,以便在简单的情况下对该方法进行数值描述和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信