Maycon Crispim de Oliveira Carvalho, A. B. Fernandes, H. C. Carvalho, R. Zângaro, Carlos José de Lima
{"title":"Preliminary Study: Disinfection of Colonoscope Using a Reprocessing System Based on a Hydrodynamic Model with Ozonated Water","authors":"Maycon Crispim de Oliveira Carvalho, A. B. Fernandes, H. C. Carvalho, R. Zângaro, Carlos José de Lima","doi":"10.1080/01919512.2022.2164251","DOIUrl":null,"url":null,"abstract":"ABSTRACT Endoscopes are flexible medical instruments that require a high-level disinfection protocol. This study aimed to develop a fluid-dynamic system with ozonated water to obtain high-level disinfection. A colonoscope replica with an internal flexible polytetrafluoroethylene (PTFE) tube was made. The set was then contaminated, washed, and disinfected with ozonated water. The replica was placed in a tank with a fluid-dynamic circuit. The endoscope was submerged into the tank and ozonated water was pumped through the working channel. Quantitative microbiological tests were carried out between the washing stage and disinfection in the fluid-dynamic system with ozonated water. The results indicated that the ozone concentration curve in the water from the 27- liter main tank reached the value of 0.95 mg/L after 20 minutes. No bacterial growth was detected after the replica remained in the hydrodynamic system with ozonated water for 15 minutes. The results showed that the fluid-dynamic system using ozonated water is promising as it enables high-level disinfection of the colonoscope.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01919512.2022.2164251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Endoscopes are flexible medical instruments that require a high-level disinfection protocol. This study aimed to develop a fluid-dynamic system with ozonated water to obtain high-level disinfection. A colonoscope replica with an internal flexible polytetrafluoroethylene (PTFE) tube was made. The set was then contaminated, washed, and disinfected with ozonated water. The replica was placed in a tank with a fluid-dynamic circuit. The endoscope was submerged into the tank and ozonated water was pumped through the working channel. Quantitative microbiological tests were carried out between the washing stage and disinfection in the fluid-dynamic system with ozonated water. The results indicated that the ozone concentration curve in the water from the 27- liter main tank reached the value of 0.95 mg/L after 20 minutes. No bacterial growth was detected after the replica remained in the hydrodynamic system with ozonated water for 15 minutes. The results showed that the fluid-dynamic system using ozonated water is promising as it enables high-level disinfection of the colonoscope.