ERT Image Evaluation Based on Sparse Representation Algorithm

Boxiang Song, Pai Wang, Jaqing Li
{"title":"ERT Image Evaluation Based on Sparse Representation Algorithm","authors":"Boxiang Song, Pai Wang, Jaqing Li","doi":"10.12783/dtetr/mcaee2020/35026","DOIUrl":null,"url":null,"abstract":"Most of the existing image quality evaluation is to extract image features, and then use support vector regression, sparse representation and other algorithms to evaluate the image quality. In this paper, an adaptive sub-dictionary image evaluation algorithm based on sparse representation is used. By extracting relevant image features such as gradient features and color features, a complete dictionary is first constructed using the features, and then a sparse representation method based on the sub-dictionary is used to obtain the sparse corresponding to the ERT image. Coefficient, the final image quality score is obtained by the corresponding formula.","PeriodicalId":11264,"journal":{"name":"DEStech Transactions on Engineering and Technology Research","volume":"159 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Engineering and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/dtetr/mcaee2020/35026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the existing image quality evaluation is to extract image features, and then use support vector regression, sparse representation and other algorithms to evaluate the image quality. In this paper, an adaptive sub-dictionary image evaluation algorithm based on sparse representation is used. By extracting relevant image features such as gradient features and color features, a complete dictionary is first constructed using the features, and then a sparse representation method based on the sub-dictionary is used to obtain the sparse corresponding to the ERT image. Coefficient, the final image quality score is obtained by the corresponding formula.
基于稀疏表示算法的ERT图像评价
现有的图像质量评价大多是提取图像特征,然后使用支持向量回归、稀疏表示等算法对图像质量进行评价。本文提出了一种基于稀疏表示的自适应子字典图像评价算法。通过提取图像的梯度特征、颜色特征等相关特征,首先利用这些特征构造一个完整的字典,然后利用基于子字典的稀疏表示方法获得ERT图像对应的稀疏。系数,最后的图像质量分数由相应的公式得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信