Bayesian Modelling of Summer Daily Maximum Temperature Data

L. K. Debusho, T. A. Diriba
{"title":"Bayesian Modelling of Summer Daily Maximum Temperature Data","authors":"L. K. Debusho, T. A. Diriba","doi":"10.37394/232020.2022.2.7","DOIUrl":null,"url":null,"abstract":"The extremes of summer daily maximum temperature was analyzed using the generalized Pareto distribution (GPD) to the Bisho weather station data, Eastern Cape Province, South Africa. Since the extreme events are naturally scarce it is expected that the use of a Bayesian inference may improve the efficiency of the parameters estimates of the distribution compared to the maximum likelihood method. Therefore, the Bayesian approach was also applied in the paper using the Markov Chain Monte Carlo for the generalized Pareto distribution. The expected improvement in efficiency is not fully achieved in this study using the noninformative and informative priors. However, the effects of informative prior constructed from historical data depends on the distance.","PeriodicalId":93382,"journal":{"name":"The international journal of evidence & proof","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of evidence & proof","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232020.2022.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The extremes of summer daily maximum temperature was analyzed using the generalized Pareto distribution (GPD) to the Bisho weather station data, Eastern Cape Province, South Africa. Since the extreme events are naturally scarce it is expected that the use of a Bayesian inference may improve the efficiency of the parameters estimates of the distribution compared to the maximum likelihood method. Therefore, the Bayesian approach was also applied in the paper using the Markov Chain Monte Carlo for the generalized Pareto distribution. The expected improvement in efficiency is not fully achieved in this study using the noninformative and informative priors. However, the effects of informative prior constructed from historical data depends on the distance.
夏季日最高气温资料的贝叶斯模型
利用广义帕累托分布(GPD)对南非东开普省Bisho气象站夏季日最高气温极值进行了分析。由于极端事件自然是稀缺的,因此与最大似然方法相比,使用贝叶斯推理可以提高分布参数估计的效率。因此,本文也将贝叶斯方法应用于广义Pareto分布的马尔可夫链蒙特卡罗。在本研究中,使用非信息先验和信息先验并没有完全达到预期的效率提高。然而,由历史数据构建的信息先验的效果取决于距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信