On Commutativity of Prime Rings with Symmetric Left θ-3- Centralizers

Ikram A. Saed
{"title":"On Commutativity of Prime Rings with Symmetric Left θ-3- Centralizers","authors":"Ikram A. Saed","doi":"10.29350/qjps.2021.26.4.1392","DOIUrl":null,"url":null,"abstract":"Let R be an associative ring with center Z(R) , I be a nonzero ideal of R and  be an automorphism  of R . An 3-additive mapping M:RxRxR R is called a symmetric left -3-centralizer if M(u1y,u2 ,u3)=M(u1,u2,u3)(y) holds for all  y, u1, u2, u3 R . In this paper , we shall investigate the  commutativity of prime rings admitting symmetric left -3-centralizer satisfying any one of the following conditions : \n(i)M([u ,y], u2, u3)  [(u), (y)] = 0 \n(ii)M((u ∘ y), u2, u3)  ((u) ∘ (y)) = 0 \n(iii)M(u2, u2, u3)  (u2) = 0 \n(iv) M(uy, u2, u3)  (uy) = 0 \n(v) M(uy, u2, u3)  (uy) \nFor all u2,u3 R and u ,y I","PeriodicalId":7856,"journal":{"name":"Al-Qadisiyah Journal Of Pure Science","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Qadisiyah Journal Of Pure Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29350/qjps.2021.26.4.1392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be an associative ring with center Z(R) , I be a nonzero ideal of R and  be an automorphism  of R . An 3-additive mapping M:RxRxR R is called a symmetric left -3-centralizer if M(u1y,u2 ,u3)=M(u1,u2,u3)(y) holds for all  y, u1, u2, u3 R . In this paper , we shall investigate the  commutativity of prime rings admitting symmetric left -3-centralizer satisfying any one of the following conditions : (i)M([u ,y], u2, u3)  [(u), (y)] = 0 (ii)M((u ∘ y), u2, u3)  ((u) ∘ (y)) = 0 (iii)M(u2, u2, u3)  (u2) = 0 (iv) M(uy, u2, u3)  (uy) = 0 (v) M(uy, u2, u3)  (uy) For all u2,u3 R and u ,y I
关于对称左θ-3中心环的交换性
设R是一个中心为Z(R)的结合环,I是R的非零理想并且是R的自同构。如果M(u1y,u2,u3)=M(u1,u2,u3)(y)对所有y, u1,u2, u3r成立,则3-可加性映射M:RxRxR R称为对称左-3中心化器。在本文中,我们将研究允许对称左-3中心环的交换性,满足以下任意条件:(i)M([u,y], u2,u3) [(u), (y)] = 0 (ii)M((u)∘(y)), u2,u3) ((u)∘(y)) = 0 (iii)M(u2, u2,u3) (u2) = 0 (iv) M(u2, u2,u3) (uy) = 0 (v) M(uy, u2,u3) (uy) = 0 (v) M(uy, u2,u3) (uy) (uy) = 0 (v) M(uy, u2,u3) (uy)) (uy)对于所有u2, u3r和u,y i
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信