Inverse problem formulation for regularity estimation in images

N. Pustelnik, P. Abry, H. Wendt, N. Dobigeon
{"title":"Inverse problem formulation for regularity estimation in images","authors":"N. Pustelnik, P. Abry, H. Wendt, N. Dobigeon","doi":"10.1109/ICIP.2014.7026227","DOIUrl":null,"url":null,"abstract":"The identification of texture changes is a challenging problem that can be addressed by considering local regularity fluctuations in an image. This work develops a procedure for local regularity estimation that combines a convex optimization strategy with wavelet leaders, specific wavelet coefficients recently introduced in the context of multifractal analysis. The proposed procedure is formulated as an inverse problem that combines the joint estimation of both local regularity exponent and of the optimal weights underlying regularity measurement. Numerical experiments using synthetic texture indicate that the performance of the proposed approach compares favorably against other wavelet based local regularity estimation formulations. The method is also illustrated with an example involving real-world texture.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"17 1","pages":"6081-6085"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7026227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The identification of texture changes is a challenging problem that can be addressed by considering local regularity fluctuations in an image. This work develops a procedure for local regularity estimation that combines a convex optimization strategy with wavelet leaders, specific wavelet coefficients recently introduced in the context of multifractal analysis. The proposed procedure is formulated as an inverse problem that combines the joint estimation of both local regularity exponent and of the optimal weights underlying regularity measurement. Numerical experiments using synthetic texture indicate that the performance of the proposed approach compares favorably against other wavelet based local regularity estimation formulations. The method is also illustrated with an example involving real-world texture.
图像中正则性估计的反问题公式
纹理变化的识别是一个具有挑战性的问题,可以通过考虑图像中的局部规则波动来解决。本研究开发了一种局部正则性估计方法,该方法将凸优化策略与小波前导相结合,小波前导是最近在多重分形分析中引入的特定小波系数。该方法将局部正则性指数的联合估计与正则性度量的最优权值的联合估计结合起来,形成一个逆问题。使用合成纹理的数值实验表明,该方法的性能优于其他基于小波的局部正则性估计公式。该方法还通过一个涉及现实世界纹理的例子进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信