Geometrically simply connected 4–manifolds and stable cohomotopy Seiberg–Witten invariants

IF 2 1区 数学
Kouichi Yasui
{"title":"Geometrically simply connected 4–manifolds\nand stable cohomotopy Seiberg–Witten invariants","authors":"Kouichi Yasui","doi":"10.2140/gt.2019.23.2685","DOIUrl":null,"url":null,"abstract":"We show that every positive definite closed 4-manifold with $b_2^+>1$ and without 1-handles has a vanishing stable cohomotopy Seiberg-Witten invariant, and thus admits no symplectic structure. We also show that every closed oriented 4-manifold with $b_2^+\\not\\equiv 1$ and $b_2^-\\not\\equiv 1\\pmod{4}$ and without 1-handles admits no symplectic structure for at least one orientation of the manifold. In fact, relaxing the 1-handle condition, we prove these results under more general conditions which are much easier to verify.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2019.23.2685","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We show that every positive definite closed 4-manifold with $b_2^+>1$ and without 1-handles has a vanishing stable cohomotopy Seiberg-Witten invariant, and thus admits no symplectic structure. We also show that every closed oriented 4-manifold with $b_2^+\not\equiv 1$ and $b_2^-\not\equiv 1\pmod{4}$ and without 1-handles admits no symplectic structure for at least one orientation of the manifold. In fact, relaxing the 1-handle condition, we prove these results under more general conditions which are much easier to verify.
几何单连通4流形与稳定上同伦Seiberg-Witten不变量
证明了每一个具有$b_2^+>1$且没有1句柄的正定闭4流形都有一个消失的稳定同伦Seiberg-Witten不变量,因此不允许有辛结构。我们还证明了每一个具有$b_2^+\非\等价1$和$b_2^-\非\等价1\pmod{4}$且没有1句柄的封闭定向4-流形在至少一个方向上不允许有辛结构。事实上,放宽1句柄条件,我们在更一般的条件下证明了这些结果,这些条件更容易验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信