Challenges for Context-Driven Time Series Forecasting

R. Ulbricht, H. Donker, Claudio Hartmann, M. Hahmann, Wolfgang Lehner
{"title":"Challenges for Context-Driven Time Series Forecasting","authors":"R. Ulbricht, H. Donker, Claudio Hartmann, M. Hahmann, Wolfgang Lehner","doi":"10.1145/2896822","DOIUrl":null,"url":null,"abstract":"Predicting time series is a crucial task for organizations, since decisions are often based on uncertain information. Many forecasting models are designed from a generic statistical point of view. However, each real-world application requires domain-specific adaptations to obtain high-quality results. All such specifics are summarized by the term of context. In contrast to current approaches, we want to integrate context as the primary driver in the forecasting process. We introduce context-driven time series forecasting focusing on two exemplary domains: renewable energy and sparse sales data. In view of this, we discuss the challenge of context integration in the individual process steps.","PeriodicalId":15582,"journal":{"name":"Journal of Data and Information Quality (JDIQ)","volume":"41 1","pages":"1 - 4"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Quality (JDIQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2896822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Predicting time series is a crucial task for organizations, since decisions are often based on uncertain information. Many forecasting models are designed from a generic statistical point of view. However, each real-world application requires domain-specific adaptations to obtain high-quality results. All such specifics are summarized by the term of context. In contrast to current approaches, we want to integrate context as the primary driver in the forecasting process. We introduce context-driven time series forecasting focusing on two exemplary domains: renewable energy and sparse sales data. In view of this, we discuss the challenge of context integration in the individual process steps.
上下文驱动时间序列预测的挑战
预测时间序列对组织来说是一项至关重要的任务,因为决策通常是基于不确定的信息。许多预测模型是从一般统计角度设计的。然而,每个实际应用程序都需要特定于领域的调整来获得高质量的结果。所有这些细节都用上下文一词来概括。与当前的方法相反,我们希望将环境作为预测过程中的主要驱动因素。我们介绍了上下文驱动的时间序列预测,重点关注两个示例领域:可再生能源和稀疏销售数据。鉴于此,我们讨论了在各个流程步骤中上下文集成的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信