{"title":"Relativistic Extension of a Charge-Conservative Finite Element Solver for Time-Dependent Maxwell-Vlasov Equations","authors":"D. Na, H. Moon, Y. Omelchenko, F. Teixeira","doi":"10.1063/1.5004557","DOIUrl":null,"url":null,"abstract":"In many problems involving particle accelerators and relativistic plasmas, the accurate modeling of relativistic particle motion is essential for accurate physical predictions. Here, we extend a charge-conserving finite element time-domain (FETD) particle-in-cell (PIC) algorithm for the time-dependent Maxwell-Vlasov equations on irregular (unstructured) meshes to the relativistic regime by implementing and comparing three particle pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5004557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
In many problems involving particle accelerators and relativistic plasmas, the accurate modeling of relativistic particle motion is essential for accurate physical predictions. Here, we extend a charge-conserving finite element time-domain (FETD) particle-in-cell (PIC) algorithm for the time-dependent Maxwell-Vlasov equations on irregular (unstructured) meshes to the relativistic regime by implementing and comparing three particle pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.