E. Babkin, E. Babkina, M. Leibman, R. Khayrullin, A. Khomutov
{"title":"Monitoring of the relief changes in polygonal peat plateaus adjacent to the highway Zapolyarnoe — Tazovsky","authors":"E. Babkin, E. Babkina, M. Leibman, R. Khayrullin, A. Khomutov","doi":"10.30758/0555-2648-2022-68-4-384-405","DOIUrl":null,"url":null,"abstract":"The thawing of polygonal ice wedges determines the dynamics of polygonal peatland relief. The polygonal peat plateaus in the Pur-Taz interfluve account for an average of 6,5 % of the total area. The purpose of the proposed study is to establish the short-term rates and direction of change in the plateaus’ relief under the combined action of technogenic and natural factors, using monitoring data for the period 2005–2022. Based on satellite images and orthophotoplans, elements of the peat plateaus have been outlined and their areas have been determined for different time slices. The studies were carried out on a peat plateau immediately adjacent to the highway (T1) and on a background peat plateau at a distance of about 1.5 km from the highway (T2). To identify the natural causes of changes in the relief of the peat plateaus, the influence of climatic parameters is considered. The rates of relief change in natural conditions and under the impact of the highway are also compared. It has been established that in the area to the north-west of the highway the relief of the T1 polygonal peat plateau has stabilized. In the south-east section of T1, degradation has sharply increased after the construction of the highway. Due to the degradation of the polygons, the polygonal troughs expanded. In the background peat plateau T2, the rate of relief degradation is somewhat higher than in the northwestern portion of T1. Comparison of the main climatic parameters and degradation rates of the polygonal relief did not show any clear correlations. Probably, of greater importance are the regime of atmospheric precipitation, the redistribution of surface runoff and recurrence of flooding and drainage of the polygonal troughs, determined by the rhythmic course of the relief degradation.","PeriodicalId":8391,"journal":{"name":"Arctic, Antarctic, and Alpine Research","volume":"199 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arctic, Antarctic, and Alpine Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.30758/0555-2648-2022-68-4-384-405","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
The thawing of polygonal ice wedges determines the dynamics of polygonal peatland relief. The polygonal peat plateaus in the Pur-Taz interfluve account for an average of 6,5 % of the total area. The purpose of the proposed study is to establish the short-term rates and direction of change in the plateaus’ relief under the combined action of technogenic and natural factors, using monitoring data for the period 2005–2022. Based on satellite images and orthophotoplans, elements of the peat plateaus have been outlined and their areas have been determined for different time slices. The studies were carried out on a peat plateau immediately adjacent to the highway (T1) and on a background peat plateau at a distance of about 1.5 km from the highway (T2). To identify the natural causes of changes in the relief of the peat plateaus, the influence of climatic parameters is considered. The rates of relief change in natural conditions and under the impact of the highway are also compared. It has been established that in the area to the north-west of the highway the relief of the T1 polygonal peat plateau has stabilized. In the south-east section of T1, degradation has sharply increased after the construction of the highway. Due to the degradation of the polygons, the polygonal troughs expanded. In the background peat plateau T2, the rate of relief degradation is somewhat higher than in the northwestern portion of T1. Comparison of the main climatic parameters and degradation rates of the polygonal relief did not show any clear correlations. Probably, of greater importance are the regime of atmospheric precipitation, the redistribution of surface runoff and recurrence of flooding and drainage of the polygonal troughs, determined by the rhythmic course of the relief degradation.
期刊介绍:
The mission of Arctic, Antarctic, and Alpine Research (AAAR) is to advance understanding of cold region environments by publishing original scientific research from past, present and future high-latitude and mountain regions. Rapid environmental change occurring in cold regions today highlights the global importance of this research. AAAR publishes peer-reviewed interdisciplinary papers including original research papers, short communications and review articles. Many of these papers synthesize a variety of disciplines including ecology, climatology, geomorphology, glaciology, hydrology, paleoceanography, biogeochemistry, and social science. Papers may be uni- or multidisciplinary but should have interdisciplinary appeal. Special thematic issues and proceedings are encouraged. The journal receives contributions from a diverse group of international authors from academia, government agencies, and land managers. In addition the journal publishes opinion pieces, book reviews and in memoria. AAAR is associated with the Institute of Arctic and Alpine Research (INSTAAR) the oldest active research institute at the University of Colorado Boulder.