A first-order Fourier integrator for the nonlinear Schrödinger equation on T without loss of regularity

Yifei Wu, Fangyan Yao
{"title":"A first-order Fourier integrator for the nonlinear Schrödinger equation on T without loss of regularity","authors":"Yifei Wu, Fangyan Yao","doi":"10.1090/mcom/3705","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a first-order Fourier integrator for solving the cubic nonlinear Schrodinger equation in one dimension. The scheme is explicit and can be implemented using the fast Fourier transform. By a rigorous analysis, we prove that the new scheme provides the first order accuracy in $H^\\gamma$ for any initial data belonging to $H^\\gamma$, for any $\\gamma >\\frac32$. That is, up to some fixed time $T$, there exists some constant $C=C(\\|u\\|_{L^\\infty([0,T]; H^{\\gamma})})>0$, such that $$ \\|u^n-u(t_n)\\|_{H^\\gamma(\\mathbb T)}\\le C \\tau, $$ where $u^n$ denotes the numerical solution at $t_n=n\\tau$. Moreover, the mass of the numerical solution $M(u^n)$ verifies $$ \\left|M(u^n)-M(u_0)\\right|\\le C\\tau^5. $$ In particular, our scheme dose not cost any additional derivative for the first-order convergence and the numerical solution obeys the almost mass conservation law. Furthermore, if $u_0\\in H^1(\\mathbb T)$, we rigorously prove that $$ \\|u^n-u(t_n)\\|_{H^1(\\mathbb T)}\\le C\\tau^{\\frac12-}, $$ where $C= C(\\|u_0\\|_{H^1(\\mathbb T)})>0$.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper, we propose a first-order Fourier integrator for solving the cubic nonlinear Schrodinger equation in one dimension. The scheme is explicit and can be implemented using the fast Fourier transform. By a rigorous analysis, we prove that the new scheme provides the first order accuracy in $H^\gamma$ for any initial data belonging to $H^\gamma$, for any $\gamma >\frac32$. That is, up to some fixed time $T$, there exists some constant $C=C(\|u\|_{L^\infty([0,T]; H^{\gamma})})>0$, such that $$ \|u^n-u(t_n)\|_{H^\gamma(\mathbb T)}\le C \tau, $$ where $u^n$ denotes the numerical solution at $t_n=n\tau$. Moreover, the mass of the numerical solution $M(u^n)$ verifies $$ \left|M(u^n)-M(u_0)\right|\le C\tau^5. $$ In particular, our scheme dose not cost any additional derivative for the first-order convergence and the numerical solution obeys the almost mass conservation law. Furthermore, if $u_0\in H^1(\mathbb T)$, we rigorously prove that $$ \|u^n-u(t_n)\|_{H^1(\mathbb T)}\le C\tau^{\frac12-}, $$ where $C= C(\|u_0\|_{H^1(\mathbb T)})>0$.
非线性Schrödinger方程在T上的一阶傅里叶积分器而不丧失规律性
本文提出了一阶傅里叶积分法求解一维三次非线性薛定谔方程。该方案是显式的,可以使用快速傅里叶变换实现。通过严格的分析,我们证明了新方案对于任何属于$H^\gamma$的初始数据,对于任何$\gamma >\frac32$,都提供了$H^\gamma$的一阶精度。也就是说,在某个固定时间$T$之前,存在一个常数$C=C(\|u\|_{L^\infty([0,T]; H^{\gamma})})>0$,使得$$ \|u^n-u(t_n)\|_{H^\gamma(\mathbb T)}\le C \tau, $$,其中$u^n$表示$t_n=n\tau$处的数值解。此外,数值解的质量$M(u^n)$验证了$$ \left|M(u^n)-M(u_0)\right|\le C\tau^5. $$,特别是,我们的方案不需要任何额外的导数来实现一阶收敛,并且数值解服从几乎质量守恒定律。进一步,如果$u_0\in H^1(\mathbb T)$,我们严格地证明$$ \|u^n-u(t_n)\|_{H^1(\mathbb T)}\le C\tau^{\frac12-}, $$在$C= C(\|u_0\|_{H^1(\mathbb T)})>0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信