Joule heating and thermal radiation impact on MHD boundary layer Nanofluid flow along an exponentially stretching surface with thermal stratified medium
B. Shankar Goud, Y. Dharmendar Reddy, Satyaranjan Mishra
{"title":"Joule heating and thermal radiation impact on MHD boundary layer Nanofluid flow along an exponentially stretching surface with thermal stratified medium","authors":"B. Shankar Goud, Y. Dharmendar Reddy, Satyaranjan Mishra","doi":"10.1177/23977914221100961","DOIUrl":null,"url":null,"abstract":"The current investigation leads to the characterisation of the flow phenomena of hydromagnetic nanofluid thermal stratified through permeable medium due to the influence of the radiative heat energy. Additionally, the behaviour of chemical reaction, viscous as well as Joule dissipations enriches the flow profiles. The embedded system for the governing equation comprised of partial differential equations is distorted to nonlinear ordinary with the help of the similarity transformations. MATLAB software is used to implement numerical schemes such as the Runge-Kutta-Fehlberg methodology in conjunction with the shooting method. The effects of several non-dimensional factors on flow phenomena are shown graphically, and the simulated results for the rate coefficients are presented in tabular form. The results established are extremely closed and excellent concurrence with published work. The thermal boundary surface thickness is enhanced due to frictional heating with rising values of Eckert number. A rise in Dufour number leads to a reduction in temperature profile. In contrast, a rise in concentration leads to higher values of the Soret number.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"110 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914221100961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 14
Abstract
The current investigation leads to the characterisation of the flow phenomena of hydromagnetic nanofluid thermal stratified through permeable medium due to the influence of the radiative heat energy. Additionally, the behaviour of chemical reaction, viscous as well as Joule dissipations enriches the flow profiles. The embedded system for the governing equation comprised of partial differential equations is distorted to nonlinear ordinary with the help of the similarity transformations. MATLAB software is used to implement numerical schemes such as the Runge-Kutta-Fehlberg methodology in conjunction with the shooting method. The effects of several non-dimensional factors on flow phenomena are shown graphically, and the simulated results for the rate coefficients are presented in tabular form. The results established are extremely closed and excellent concurrence with published work. The thermal boundary surface thickness is enhanced due to frictional heating with rising values of Eckert number. A rise in Dufour number leads to a reduction in temperature profile. In contrast, a rise in concentration leads to higher values of the Soret number.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.