{"title":"A dual Yamada–Watanabe theorem for Lévy driven stochastic differential equations","authors":"David Criens","doi":"10.1214/21-ECP384","DOIUrl":null,"url":null,"abstract":"We prove a dual Yamada--Watanabe theorem for one-dimensional stochastic differential equations driven by quasi-left continuous semimartingales with independent increments. In particular, our result covers stochastic differential equations driven by (time-inhomogeneous) Levy processes.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-ECP384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We prove a dual Yamada--Watanabe theorem for one-dimensional stochastic differential equations driven by quasi-left continuous semimartingales with independent increments. In particular, our result covers stochastic differential equations driven by (time-inhomogeneous) Levy processes.