{"title":"Comprehensive evaluation of file systems robustness with SPIN model checking","authors":"Jingcheng Yuan, Toshiaki Aoki, Xiaoyun Guo","doi":"10.1002/stvr.1828","DOIUrl":null,"url":null,"abstract":"In existing computer systems, file systems are indispensable for organizing user data and system codes. However, several studies have reported certain file system errors that cause significant data loss or system crashes. Most of these errors are due to external failures, such as an unexpected power outage. However, comprehensively evaluating file system robustness to detect these errors is challenging. The various types of file systems use different data structures and algorithms for various applications. Moreover, file system errors may be triggered by an unpredictable external condition. In addition, a file system works in an operating system's kernel layer as a passive module and runs in a multi‐thread mode, which makes file system testing time‐intensive. Furthermore, the large number of states in file systems leads to greedy checking, which results in a state explosion. In this study, we comprehensively evaluated the robustness expected in multiple properties of file systems using a model checking approach. The evaluation covered the majority of the mainstream file system types and included both single‐thread and multi‐thread modes. We developed Promela models that abstracted the real file systems and subsequently checked them using a SPIN model checker. Our model was optimized to avoid state explosion during model checking. Using the model checking, we successfully detected corner‐case errors during an unexpected power outage. By analysing counterexamples generated by model checking, we determined an improved file system model capable of preventing errors in most mainstream file system types. Finally, we rechecked the improved file system model and verified the absence of all critical errors.","PeriodicalId":49506,"journal":{"name":"Software Testing Verification & Reliability","volume":"151 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Testing Verification & Reliability","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/stvr.1828","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
In existing computer systems, file systems are indispensable for organizing user data and system codes. However, several studies have reported certain file system errors that cause significant data loss or system crashes. Most of these errors are due to external failures, such as an unexpected power outage. However, comprehensively evaluating file system robustness to detect these errors is challenging. The various types of file systems use different data structures and algorithms for various applications. Moreover, file system errors may be triggered by an unpredictable external condition. In addition, a file system works in an operating system's kernel layer as a passive module and runs in a multi‐thread mode, which makes file system testing time‐intensive. Furthermore, the large number of states in file systems leads to greedy checking, which results in a state explosion. In this study, we comprehensively evaluated the robustness expected in multiple properties of file systems using a model checking approach. The evaluation covered the majority of the mainstream file system types and included both single‐thread and multi‐thread modes. We developed Promela models that abstracted the real file systems and subsequently checked them using a SPIN model checker. Our model was optimized to avoid state explosion during model checking. Using the model checking, we successfully detected corner‐case errors during an unexpected power outage. By analysing counterexamples generated by model checking, we determined an improved file system model capable of preventing errors in most mainstream file system types. Finally, we rechecked the improved file system model and verified the absence of all critical errors.
期刊介绍:
The journal is the premier outlet for research results on the subjects of testing, verification and reliability. Readers will find useful research on issues pertaining to building better software and evaluating it.
The journal is unique in its emphasis on theoretical foundations and applications to real-world software development. The balance of theory, empirical work, and practical applications provide readers with better techniques for testing, verifying and improving the reliability of software.
The journal targets researchers, practitioners, educators and students that have a vested interest in results generated by high-quality testing, verification and reliability modeling and evaluation of software. Topics of special interest include, but are not limited to:
-New criteria for software testing and verification
-Application of existing software testing and verification techniques to new types of software, including web applications, web services, embedded software, aspect-oriented software, and software architectures
-Model based testing
-Formal verification techniques such as model-checking
-Comparison of testing and verification techniques
-Measurement of and metrics for testing, verification and reliability
-Industrial experience with cutting edge techniques
-Descriptions and evaluations of commercial and open-source software testing tools
-Reliability modeling, measurement and application
-Testing and verification of software security
-Automated test data generation
-Process issues and methods
-Non-functional testing