Efficient Data Compression in Wireless Sensor Networks for Civil Infrastructure Health Monitoring

Shengpu Liu, Liang Cheng
{"title":"Efficient Data Compression in Wireless Sensor Networks for Civil Infrastructure Health Monitoring","authors":"Shengpu Liu, Liang Cheng","doi":"10.1109/SAHCN.2006.288567","DOIUrl":null,"url":null,"abstract":"In this paper, we present an efficient sensor data compression process for civil infrastructure health monitoring applications. It integrates lifting scheme wavelet transform (LSWT) and distributed source coding (DSC), which can reduce the raw data size by 1:27 to 1:80 while having a minor effect on the modal parameters identified from the sensor data. We have compared our algorithms with other data compression algorithms for structural health monitoring. Results show that our algorithms can achieve 80% ~ 100% higher compression ratios with the same signal-restoration quality","PeriodicalId":58925,"journal":{"name":"Digital Communications and Networks","volume":"1 1","pages":"823-829"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAHCN.2006.288567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper, we present an efficient sensor data compression process for civil infrastructure health monitoring applications. It integrates lifting scheme wavelet transform (LSWT) and distributed source coding (DSC), which can reduce the raw data size by 1:27 to 1:80 while having a minor effect on the modal parameters identified from the sensor data. We have compared our algorithms with other data compression algorithms for structural health monitoring. Results show that our algorithms can achieve 80% ~ 100% higher compression ratios with the same signal-restoration quality
民用基础设施健康监测无线传感器网络的高效数据压缩
本文提出了一种用于民用基础设施健康监测的传感器数据压缩方法。该方法将提升方案小波变换(LSWT)和分布式源编码(DSC)相结合,可以将原始数据大小减少1:27 ~ 1:80,同时对从传感器数据中识别的模态参数影响较小。我们将我们的算法与其他用于结构健康监测的数据压缩算法进行了比较。结果表明,在相同的信号恢复质量下,该算法的压缩比可提高80% ~ 100%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
158
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信