Hybrid MemNet for Extractive Summarization

A. Singh, Manish Gupta, Vasudeva Varma
{"title":"Hybrid MemNet for Extractive Summarization","authors":"A. Singh, Manish Gupta, Vasudeva Varma","doi":"10.1145/3132847.3133127","DOIUrl":null,"url":null,"abstract":"Extractive text summarization has been an extensive research problem in the field of natural language understanding. While the conventional approaches rely mostly on manually compiled features to generate the summary, few attempts have been made in developing data-driven systems for extractive summarization. To this end, we present a fully data-driven end-to-end deep network which we call as Hybrid MemNet for single document summarization task. The network learns the continuous unified representation of a document before generating its summary. It jointly captures local and global sentential information along with the notion of summary worthy sentences. Experimental results on two different corpora confirm that our model shows significant performance gains compared with the state-of-the-art baselines.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Extractive text summarization has been an extensive research problem in the field of natural language understanding. While the conventional approaches rely mostly on manually compiled features to generate the summary, few attempts have been made in developing data-driven systems for extractive summarization. To this end, we present a fully data-driven end-to-end deep network which we call as Hybrid MemNet for single document summarization task. The network learns the continuous unified representation of a document before generating its summary. It jointly captures local and global sentential information along with the notion of summary worthy sentences. Experimental results on two different corpora confirm that our model shows significant performance gains compared with the state-of-the-art baselines.
用于抽取摘要的混合MemNet
摘要文摘一直是自然语言理解领域一个广泛研究的问题。虽然传统的方法主要依赖于手动编译的特征来生成摘要,但很少有人尝试开发用于提取摘要的数据驱动系统。为此,我们提出了一个完全数据驱动的端到端深度网络,我们称之为混合MemNet,用于单文档摘要任务。网络在生成摘要之前学习文档的连续统一表示。它联合捕获局部和全局的句子信息以及总结句子的概念。在两种不同的语料库上的实验结果证实,与最先进的基线相比,我们的模型显示出显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信