Modelling count data using the logratio-normal-multinomial distribution

Pub Date : 2020-01-01 DOI:10.2436/20.8080.02.96
M. Comas-Cufí, J. Martín-Fernández, G. Mateu-Figueras, J. Palarea‐Albaladejo
{"title":"Modelling count data using the logratio-normal-multinomial distribution","authors":"M. Comas-Cufí, J. Martín-Fernández, G. Mateu-Figueras, J. Palarea‐Albaladejo","doi":"10.2436/20.8080.02.96","DOIUrl":null,"url":null,"abstract":"The logratio-normal-multinomial distribution is a count data model resulting from compounding a multinomial distribution for the counts with a multivariate logratio-normal distribution for the multinomial event probabilities. However, the logratio-normal-multinomial probability mass function does not admit a closed form expression and, consequently, numerical approximation is required for parameter estimation. In this work, different estimation approaches are introduced and evaluated. We concluded that estimation based on a quasi-Monte Carlo Expectation-Maximisation algorithm provides the best overall results. Building on this, the performances of the Dirichlet-multinomial and logratio-normal-multinomial models are compared through a number of examples using simulated and real count data.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2436/20.8080.02.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The logratio-normal-multinomial distribution is a count data model resulting from compounding a multinomial distribution for the counts with a multivariate logratio-normal distribution for the multinomial event probabilities. However, the logratio-normal-multinomial probability mass function does not admit a closed form expression and, consequently, numerical approximation is required for parameter estimation. In this work, different estimation approaches are introduced and evaluated. We concluded that estimation based on a quasi-Monte Carlo Expectation-Maximisation algorithm provides the best overall results. Building on this, the performances of the Dirichlet-multinomial and logratio-normal-multinomial models are compared through a number of examples using simulated and real count data.
分享
查看原文
使用对数-正态-多项分布建模计数数据
对数-正态-多项分布是一种计数数据模型,由计数的多项分布与多项事件概率的多元对数-正态分布复合而成。然而,对数-正态-多项概率质量函数不允许一个封闭形式的表达式,因此,参数估计需要数值逼近。在这项工作中,介绍和评估了不同的估计方法。我们得出结论,基于准蒙特卡罗期望最大化算法的估计提供了最佳的整体结果。在此基础上,对dirichlet -多项式模型和对数-正态多项式模型的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信