Expediting population diversification in evolutionary computation with quantum algorithm

Jun Suk Kim, C. Ahn
{"title":"Expediting population diversification in evolutionary computation with quantum algorithm","authors":"Jun Suk Kim, C. Ahn","doi":"10.1504/IJBIC.2021.113356","DOIUrl":null,"url":null,"abstract":"Quantum computing's uniqueness in commencing parallel computation renders unprecedented efficient optimisation as possible. This paper introduces the adaptation of quantum processing to crowding, one of the genetic algorithmic procedures to secure undeveloped individual chromosomes in pursuit of diversifying the target population. We argue that the nature of genetic algorithm to find the best solution in the process of optimisation can be greatly enhanced by the capability of quantum computing to perform multiple computations in parallel. By introducing the relevant quantum mathematics based on Grover's selection algorithm and constructing its mechanism in a quantum simulator, we come to conclusion that our proposed approach is valid in such a way that it can precisely reduce the amount of computation query to finish the crowding process without any impairment in the middle of genetic operations.","PeriodicalId":13636,"journal":{"name":"Int. J. Bio Inspired Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bio Inspired Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBIC.2021.113356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computing's uniqueness in commencing parallel computation renders unprecedented efficient optimisation as possible. This paper introduces the adaptation of quantum processing to crowding, one of the genetic algorithmic procedures to secure undeveloped individual chromosomes in pursuit of diversifying the target population. We argue that the nature of genetic algorithm to find the best solution in the process of optimisation can be greatly enhanced by the capability of quantum computing to perform multiple computations in parallel. By introducing the relevant quantum mathematics based on Grover's selection algorithm and constructing its mechanism in a quantum simulator, we come to conclusion that our proposed approach is valid in such a way that it can precisely reduce the amount of computation query to finish the crowding process without any impairment in the middle of genetic operations.
用量子算法加速进化计算中的种群多样化
量子计算在开始并行计算方面的独特性使得前所未有的高效优化成为可能。本文介绍了量子处理对拥挤的适应,拥挤是一种遗传算法,用于保护未发育的个体染色体,以追求目标群体的多样化。我们认为,遗传算法在优化过程中找到最佳解决方案的本质可以通过量子计算并行执行多个计算的能力大大增强。通过引入基于Grover选择算法的相关量子数学,并在量子模拟器上构建其机制,我们得出结论,我们提出的方法是有效的,它可以精确地减少计算查询量,在不损害遗传操作中间的情况下完成拥挤过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信