Numerical Solution of Laminar Flow over Symmetric NACA Airfoils

Prasanna M.S.S, Shashank Sadineni, Rahul Kotikalapudi, Prasad Pokkunuri
{"title":"Numerical Solution of Laminar Flow over Symmetric NACA Airfoils","authors":"Prasanna M.S.S, Shashank Sadineni, Rahul Kotikalapudi, Prasad Pokkunuri","doi":"10.11159/enfht20.200","DOIUrl":null,"url":null,"abstract":"Solving the Boundary Layer Equations is a challenge, even more so for complex geometries. This requires resolution of the drag inducing layer immediately adjacent to the solid surface, which is numerically and computationally intensive. Finite Difference schemes, though accurate, are better suited for rectilinear grids. The present work applies a unique approximation to solve the Boundary Layer Equations over a curved airfoil, approximating the geometry by linear splines, and sequentially applying the inclined flat plate solution over each individual section. The lift coefficient thus obtained for a NACA 0005 airfoil is compared with established values, for different angles of attack.","PeriodicalId":92806,"journal":{"name":"Journal of fluid flow, heat and mass transfer","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fluid flow, heat and mass transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/enfht20.200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solving the Boundary Layer Equations is a challenge, even more so for complex geometries. This requires resolution of the drag inducing layer immediately adjacent to the solid surface, which is numerically and computationally intensive. Finite Difference schemes, though accurate, are better suited for rectilinear grids. The present work applies a unique approximation to solve the Boundary Layer Equations over a curved airfoil, approximating the geometry by linear splines, and sequentially applying the inclined flat plate solution over each individual section. The lift coefficient thus obtained for a NACA 0005 airfoil is compared with established values, for different angles of attack.
对称NACA翼型层流的数值解
求解边界层方程是一个挑战,对于复杂的几何图形更是如此。这需要对紧挨着固体表面的阻力诱导层进行解析,这在数值和计算上都是非常密集的。有限差分格式虽然精确,但更适合于直线网格。目前的工作适用于一个独特的近似来解决边界层方程在一个弯曲的翼型,近似几何的线性样条,并依次应用倾斜平板解决方案在每个单独的部分。升力系数因此获得了一个NACA 0005翼型是比较与建立的值,不同的攻角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信