Influence of Plasma Gas Flow Rate on the Mechanical and Microstructural Aspects of Plasma Arc Welded Titanium Alloy Joints

Q4 Engineering
P. T, R. S, B. V
{"title":"Influence of Plasma Gas Flow Rate on the Mechanical and Microstructural Aspects of Plasma Arc Welded Titanium Alloy Joints","authors":"P. T, R. S, B. V","doi":"10.37255/jme.v17i3pp080-086","DOIUrl":null,"url":null,"abstract":"In the present investigation, the effect and role of plasma gas flow rate on the formation of microstructure during plasma arc welding of Ti6Al4V titanium alloy were studied using microscopic observation, energy dispersive spectroscopic analysis, tensile tests and microhardness measurements. Plasma gas flow rate influences the arc pressure, arc constriction, and stability. The transformation of plasma arc from conduction mode to keyhole mode causes severe changes to the microstructural characteristics of the titanium welds. This transformation takes place with slight variations of PGFR. Weld geometries increase with an increase in the PGFR. The microstructural examination shows that there are various phases formed during the variation in PGFR. Fusion zone had acicular α and widmanstätten α. Mechanical properties (i.e) strength and hardness of the joints increase with an increase in plasma gas flow rate. In the joint welded with 1 L/min, there is the formation of α-case which is an oxygen rich brittle subsurface structure and found detrimental to the ductility of the joints.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v17i3pp080-086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

In the present investigation, the effect and role of plasma gas flow rate on the formation of microstructure during plasma arc welding of Ti6Al4V titanium alloy were studied using microscopic observation, energy dispersive spectroscopic analysis, tensile tests and microhardness measurements. Plasma gas flow rate influences the arc pressure, arc constriction, and stability. The transformation of plasma arc from conduction mode to keyhole mode causes severe changes to the microstructural characteristics of the titanium welds. This transformation takes place with slight variations of PGFR. Weld geometries increase with an increase in the PGFR. The microstructural examination shows that there are various phases formed during the variation in PGFR. Fusion zone had acicular α and widmanstätten α. Mechanical properties (i.e) strength and hardness of the joints increase with an increase in plasma gas flow rate. In the joint welded with 1 L/min, there is the formation of α-case which is an oxygen rich brittle subsurface structure and found detrimental to the ductility of the joints.
等离子体气体流量对等离子弧焊钛合金接头力学和显微组织的影响
采用金相观察、能谱分析、拉伸试验和显微硬度测试等方法,研究了等离子体气体流量对Ti6Al4V钛合金等离子弧焊组织形成的影响和作用。等离子体气体流速影响电弧压力、电弧收缩和稳定性。等离子体电弧由传导模式转变为锁孔模式,使钛焊缝的显微组织特征发生了剧烈变化。这种转变发生在PGFR略有变化的情况下。焊缝几何形状随着PGFR的增加而增加。显微组织分析表明,PGFR在变化过程中形成了多种相。融合区有针状α和widmanstätten α。随着等离子体气体流量的增加,接头的力学性能(即强度和硬度)增加。在1 L/min焊接接头中,形成了α-壳,这是一种富氧脆性亚表面组织,不利于接头的延性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Academic Journal of Manufacturing Engineering
Academic Journal of Manufacturing Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信