Automated Accelerator Generation and Optimization with Composable, Parallel and Pipeline Architecture

J. Cong, Peng Wei, Cody Hao Yu, Peng Zhang
{"title":"Automated Accelerator Generation and Optimization with Composable, Parallel and Pipeline Architecture","authors":"J. Cong, Peng Wei, Cody Hao Yu, Peng Zhang","doi":"10.1145/3195970.3195999","DOIUrl":null,"url":null,"abstract":"CPU-FPGA heterogeneous architectures feature flexible acceleration of many workloads to advance computational capabilities and energy efficiency in today’s datacenters. This advantage, however, is often overshadowed by the poor programmability of FPGAs. Although recent advances in high-level synthesis (HLS) significantly improve the FPGA programmability, it still leaves programmers facing the challenge of identifying the optimal design configuration in a tremendous design space. In this paper we propose the composable, parallel and pipeline (CPP) microarchitecture as an accelerator design template to substantially reduce the design space. Also, by introducing the CPP analytical model to capture the performance-resource trade-offs, we achieve efficient, analytical-based design space exploration. Furthermore, we develop the AutoAccel framework to automate the entire accelerator generation process. Our experiments show that the AutoAccel-generated accelerators outperform their corresponding software implementations by an average of 72x for a broad class of computation kernels.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"6 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3195999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

CPU-FPGA heterogeneous architectures feature flexible acceleration of many workloads to advance computational capabilities and energy efficiency in today’s datacenters. This advantage, however, is often overshadowed by the poor programmability of FPGAs. Although recent advances in high-level synthesis (HLS) significantly improve the FPGA programmability, it still leaves programmers facing the challenge of identifying the optimal design configuration in a tremendous design space. In this paper we propose the composable, parallel and pipeline (CPP) microarchitecture as an accelerator design template to substantially reduce the design space. Also, by introducing the CPP analytical model to capture the performance-resource trade-offs, we achieve efficient, analytical-based design space exploration. Furthermore, we develop the AutoAccel framework to automate the entire accelerator generation process. Our experiments show that the AutoAccel-generated accelerators outperform their corresponding software implementations by an average of 72x for a broad class of computation kernels.
自动加速器生成和优化与可组合,并行和管道架构
CPU-FPGA异构架构可灵活加速许多工作负载,从而提高当今数据中心的计算能力和能源效率。然而,这种优势往往被fpga糟糕的可编程性所掩盖。尽管近年来在高级综合(high-level synthesis, HLS)方面的进展显著提高了FPGA的可编程性,但程序员仍然面临着在巨大的设计空间中确定最佳设计配置的挑战。本文提出了可组合、并行和流水线(CPP)微体系结构作为加速器设计模板,大大减少了设计空间。此外,通过引入CPP分析模型来捕获性能-资源权衡,我们实现了高效的、基于分析的设计空间探索。此外,我们开发了AutoAccel框架,使整个加速器生成过程自动化。我们的实验表明,在广泛的计算内核类别中,autoaccelerator生成的加速器的性能比相应的软件实现平均高出72倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信