Lq-Estimates for stationary Stokes system with coefficients measurable in one direction

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hongjie Dong, Doyoon Kim
{"title":"Lq-Estimates for stationary Stokes system with coefficients measurable in one direction","authors":"Hongjie Dong, Doyoon Kim","doi":"10.1142/s1664360719500048","DOIUrl":null,"url":null,"abstract":"We study the stationary Stokes system with variable coefficients in the whole space, a half space, and on bounded Lipschitz domains. In the whole and half spaces, we obtain a priori [Formula: see text]-estimates for any [Formula: see text] when the coefficients are merely measurable functions in one fixed direction. For the system on bounded Lipschitz domains with a small Lipschitz constant, we obtain a [Formula: see text]-estimate and prove the solvability for any [Formula: see text] when the coefficients are merely measurable functions in one direction and have locally small mean oscillations in the orthogonal directions in each small ball, where the direction is allowed to depend on the ball.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1664360719500048","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15

Abstract

We study the stationary Stokes system with variable coefficients in the whole space, a half space, and on bounded Lipschitz domains. In the whole and half spaces, we obtain a priori [Formula: see text]-estimates for any [Formula: see text] when the coefficients are merely measurable functions in one fixed direction. For the system on bounded Lipschitz domains with a small Lipschitz constant, we obtain a [Formula: see text]-estimate and prove the solvability for any [Formula: see text] when the coefficients are merely measurable functions in one direction and have locally small mean oscillations in the orthogonal directions in each small ball, where the direction is allowed to depend on the ball.
系数在一个方向上可测的平稳Stokes系统的lq估计
研究了全空间、半空间和有界Lipschitz域上的变系数平稳Stokes系统。在整个和半空间中,我们得到了一个先验的[公式:见文]-当系数仅仅是一个固定方向上的可测量函数时的任何[公式:见文]的估计。对于具有小Lipschitz常数的有界Lipschitz域上的系统,我们得到了一个[公式:见文]-当系数仅仅是一个方向上的可测量函数并且在每个小球的正交方向上具有局部小的平均振荡时,我们估计并证明了任何[公式:见文]的可解性,其中方向允许依赖于球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信