Accelerating vision-based 3D indoor localization by distributing image processing over space and time

D. Yun, Hyunseok Chang, T. V. Lakshman
{"title":"Accelerating vision-based 3D indoor localization by distributing image processing over space and time","authors":"D. Yun, Hyunseok Chang, T. V. Lakshman","doi":"10.1145/2671015.2671018","DOIUrl":null,"url":null,"abstract":"In a vision-based 3D indoor localization system, conducting localization of user's device at a high frame rate is important to support real-time augment reality applications. However, vision-based 3D localization typically involves 2D keypoint detection and 2D-3D matching processes, which are in general too computationally intensive to be carried out at a high frame rate (e.g., 30 fps) on commodity hardware such as laptops or smartphones. In order to reduce per-frame computation time for 3D localization, we present a new method that distributes required computation over space and time, by splitting a video frame region into multiple sub-blocks, and processing only a sub-block in a rotating sequence at each video frame. The proposed method is general enough that it can be applied to any keypoint detection and 2D-3D matching schemes. We apply the method in a prototype 3D indoor localization system, and evaluate its performance in a 120m long indoor hallway environment using 5,200 video frames of 640x480 (VGA) resolution and a commodity laptop. When SIFT-based keypoint detection is used, our method reduces average and maximum computation time per frame by a factor of 10 and 7 respectively, with a marginal increase of positioning error (e.g., 0.17 m). This improvement enables the frame processing rate to increase from 3.2 fps to 23.3 fps.","PeriodicalId":93673,"journal":{"name":"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology","volume":"88 1","pages":"77-86"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2671015.2671018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In a vision-based 3D indoor localization system, conducting localization of user's device at a high frame rate is important to support real-time augment reality applications. However, vision-based 3D localization typically involves 2D keypoint detection and 2D-3D matching processes, which are in general too computationally intensive to be carried out at a high frame rate (e.g., 30 fps) on commodity hardware such as laptops or smartphones. In order to reduce per-frame computation time for 3D localization, we present a new method that distributes required computation over space and time, by splitting a video frame region into multiple sub-blocks, and processing only a sub-block in a rotating sequence at each video frame. The proposed method is general enough that it can be applied to any keypoint detection and 2D-3D matching schemes. We apply the method in a prototype 3D indoor localization system, and evaluate its performance in a 120m long indoor hallway environment using 5,200 video frames of 640x480 (VGA) resolution and a commodity laptop. When SIFT-based keypoint detection is used, our method reduces average and maximum computation time per frame by a factor of 10 and 7 respectively, with a marginal increase of positioning error (e.g., 0.17 m). This improvement enables the frame processing rate to increase from 3.2 fps to 23.3 fps.
通过在空间和时间上分布图像处理来加速基于视觉的3D室内定位
在基于视觉的三维室内定位系统中,以高帧率对用户设备进行定位对于支持实时增强现实应用非常重要。然而,基于视觉的3D定位通常涉及2D关键点检测和2D-3D匹配过程,这些过程通常计算量太大,无法在笔记本电脑或智能手机等商用硬件上以高帧率(例如30 fps)执行。为了减少3D定位的每帧计算时间,我们提出了一种新的方法,通过将视频帧区域分割成多个子块,并在每个视频帧的旋转序列中只处理一个子块,将所需的计算分配到空间和时间上。该方法具有通用性,可应用于任何关键点检测和2D-3D匹配方案。我们将该方法应用于一个3D室内定位系统原型中,并使用5200帧640x480 (VGA)分辨率的视频帧和一台普通笔记本电脑来评估其在120米长的室内走廊环境中的性能。当使用基于sift的关键点检测时,我们的方法将每帧的平均计算时间和最大计算时间分别减少了10倍和7倍,定位误差略有增加(例如0.17 m),这使得帧处理速率从3.2 fps提高到23.3 fps。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信