{"title":"ADAPT-TTS: HIGH-QUALITY ZERO-SHOT MULTI-SPEAKER TEXT-TO-SPEECH ADAPTIVE-BASED FOR VIETNAMESE","authors":"Phuong Pham Ngoc, Chung Tran Quang, Mai Luong Chi","doi":"10.15625/1813-9663/18136","DOIUrl":null,"url":null,"abstract":"Current adaptive-based speech synthesis techniques are based on two main streams: 1. Fine-tuning the model using small amounts of adaptive data, and 2. Conditionally training the entire model through a speaker embedding of the target speaker. However, both of these methods require adaptive data to appear during training, which makes the training cost to generate new voices quite expensively. In addition, the traditional TTS model uses a simple loss function to reproduce the acoustic features. However, this optimization is based on incorrect distribution assumptions leading to noisy composite audio results. We introduce the Adapt-TTS model that allows high-quality audio synthesis from a small adaptive sample without training to solve these problems. Key recommendations: 1. The Extracting Mel-vector (EMV) architecture allows for a better representation of speaker characteristics and speech style; 2. An improved zero-shot model with a denoising diffusion model (Mel-spectrogram denoiser) component allows for new voice synthesis without training with better quality (less noise). The evaluation results have proven the model's effectiveness when only needing a single utterance (1-3 seconds) of the reference speaker, the synthesis system gave high-quality synthesis results and achieved high similarity.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/18136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Current adaptive-based speech synthesis techniques are based on two main streams: 1. Fine-tuning the model using small amounts of adaptive data, and 2. Conditionally training the entire model through a speaker embedding of the target speaker. However, both of these methods require adaptive data to appear during training, which makes the training cost to generate new voices quite expensively. In addition, the traditional TTS model uses a simple loss function to reproduce the acoustic features. However, this optimization is based on incorrect distribution assumptions leading to noisy composite audio results. We introduce the Adapt-TTS model that allows high-quality audio synthesis from a small adaptive sample without training to solve these problems. Key recommendations: 1. The Extracting Mel-vector (EMV) architecture allows for a better representation of speaker characteristics and speech style; 2. An improved zero-shot model with a denoising diffusion model (Mel-spectrogram denoiser) component allows for new voice synthesis without training with better quality (less noise). The evaluation results have proven the model's effectiveness when only needing a single utterance (1-3 seconds) of the reference speaker, the synthesis system gave high-quality synthesis results and achieved high similarity.