SOME BOUNDS FOR THE COMPLEX µCEBYŠEV FUNCTIONAL OF ABSOLUTELY CONTINUOUS FUNCTIONS

IF 0.3 Q3 MATHEMATICS
S. Dragomir
{"title":"SOME BOUNDS FOR THE COMPLEX µCEBYŠEV FUNCTIONAL OF ABSOLUTELY CONTINUOUS FUNCTIONS","authors":"S. Dragomir","doi":"10.22190/fumi210429015d","DOIUrl":null,"url":null,"abstract":"In this paper we provide several bounds for the modulus of the \\textit{%complex \\v{C}eby\\v{s}ev functional}%\\begin{equation*}C\\left( f,g\\right) :=\\frac{1}{b-a}\\int_{a}^{b}f\\left( t\\right) g\\left(t\\right) dt-\\frac{1}{b-a}\\int_{a}^{b}f\\left( t\\right) dt\\int_{a}^{b}g\\left(t\\right) dt\\end{equation*}%under various assumptions for the integrable functions $f,$ $g:\\left[ a,b%\\right] \\rightarrow \\mathbb{C}$. We show amongst others that, if $f$ and $g$are absolutely continuous on $\\left[ a,b\\right] $ with $f^{\\prime }\\in L_{p}%\\left[ a,b\\right] ,$ $g^{\\prime }\\in L_{q}\\left[ a,b\\right] ,$ $p,$ $q>1$and $\\frac{1}{p}+\\frac{1}{q}=1$, then%\\begin{equation*}\\max \\left\\{ \\left\\vert C\\left( f,g\\right) \\right\\vert ,\\left\\vert C\\left(\\left\\vert f\\right\\vert ,g\\right) \\right\\vert ,\\left\\vert C\\left(f,\\left\\vert g\\right\\vert \\right) \\right\\vert ,\\left\\vert C\\left( \\left\\vertf\\right\\vert ,\\left\\vert g\\right\\vert \\right) \\right\\vert \\right\\}\\end{equation*}%\\begin{equation*}\\leq \\left[ C\\left( \\ell ,F_{\\left\\vert f^{\\prime }\\right\\vert ^{p}}\\right) %\\right] ^{1/p}\\left[ C\\left( \\ell ,F_{\\left\\vert g^{\\prime }\\right\\vert^{q}}\\right) \\right] ^{1/q},\\end{equation*}%where $F_{\\left\\vert h\\right\\vert }:\\left[ a,b\\right] \\rightarrow \\mathbb{[}%0,\\infty )$ is defined by $F_{\\left\\vert h\\right\\vert }\\left( t\\right):=\\int_{a}^{t}$.$\\left\\vert h\\left( t\\right) \\right\\vert dt$ and $\\ell :%\\left[ a,b\\right] \\rightarrow \\left[ a,b\\right] ,$ $\\ell \\left( t\\right) =t$is the identity function on the interval $\\left[ a,b\\right] .$ Applicationsfor the trapezoid inequality are also provided.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"172 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi210429015d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we provide several bounds for the modulus of the \textit{%complex \v{C}eby\v{s}ev functional}%\begin{equation*}C\left( f,g\right) :=\frac{1}{b-a}\int_{a}^{b}f\left( t\right) g\left(t\right) dt-\frac{1}{b-a}\int_{a}^{b}f\left( t\right) dt\int_{a}^{b}g\left(t\right) dt\end{equation*}%under various assumptions for the integrable functions $f,$ $g:\left[ a,b%\right] \rightarrow \mathbb{C}$. We show amongst others that, if $f$ and $g$are absolutely continuous on $\left[ a,b\right] $ with $f^{\prime }\in L_{p}%\left[ a,b\right] ,$ $g^{\prime }\in L_{q}\left[ a,b\right] ,$ $p,$ $q>1$and $\frac{1}{p}+\frac{1}{q}=1$, then%\begin{equation*}\max \left\{ \left\vert C\left( f,g\right) \right\vert ,\left\vert C\left(\left\vert f\right\vert ,g\right) \right\vert ,\left\vert C\left(f,\left\vert g\right\vert \right) \right\vert ,\left\vert C\left( \left\vertf\right\vert ,\left\vert g\right\vert \right) \right\vert \right\}\end{equation*}%\begin{equation*}\leq \left[ C\left( \ell ,F_{\left\vert f^{\prime }\right\vert ^{p}}\right) %\right] ^{1/p}\left[ C\left( \ell ,F_{\left\vert g^{\prime }\right\vert^{q}}\right) \right] ^{1/q},\end{equation*}%where $F_{\left\vert h\right\vert }:\left[ a,b\right] \rightarrow \mathbb{[}%0,\infty )$ is defined by $F_{\left\vert h\right\vert }\left( t\right):=\int_{a}^{t}$.$\left\vert h\left( t\right) \right\vert dt$ and $\ell :%\left[ a,b\right] \rightarrow \left[ a,b\right] ,$ $\ell \left( t\right) =t$is the identity function on the interval $\left[ a,b\right] .$ Applicationsfor the trapezoid inequality are also provided.
绝对连续函数的复数泛函的若干界
在本文中,我们为可积函数$f,$ $g:\ textit{%复数\v{C} by\v{s}ev泛函}%\begin{方程*}C\左(f,g\右)的模提供了几个界:=\frac{1}{b-a}\int_{a}^{b}f\左(t\右)dt-\frac{1}{b-a}\int_{a}^{b}f\左(t\右)dt\int_{a}^{b}g\左(t\右)dt\end{方程*}%在各种假设下的可积函数$f,$ $g:\left[a,b%\右]\rightarrow \mathbb{C}$。我们证明了,如果$f$和$g$在$\左[a,b\右]$上是绝对连续的,且$f^{\素数}\在L_{p}%\左[a,b\右]中,$ g^{\素数}\在L_{q}\左[a,b\右]中,$ $p,$ $q{1} 1$和$ $ frc {1}{p}+ $ frc {1}{q}=1$,然后%\begin{equation*}\max \left\{\左\vert C\left(f, g\right) \右\vert,\左\vert C\left(\左\vertf\right\vert,g\right) \右\vert,\左\vert C\left(f,\左\vert g\right\vert \right) \右\vert C\left(\left\vert \right\vert \right) \右\vert \right\vert C\left(\left\ vertf\right\vert,\left\vert g\right\vert \right) \右\vert \right\ right\vert \right\ end{equation*}%\begin{equation*}\leq \left[C\left(\ well,F_{\left\vert f^{\prime}\right\vert^{p}}\right) %\right \right] ^{1/p}\left[C\left(\ well,F_{\left\vert g^{\prime}\right\vert^{q}}\right) \右)正确\]^ {1 / q},{方程*}% \结束在$ f{\左右\绿色h \ \绿色}:左\ [a, b \] \ rightarrow \ mathbb {[} % 0 \ infty)被定义为f美元{\左右\绿色h \ \绿色}\左(t \右):= \ int_{一}^ {t} $。$\left\vert h\left(t\right) \right\vert dt$和$\ well:%\left[a,b\right] \rightarrow \left[a,b\right],$ $\ well \left(t\right) =t$是区间$\left[a,b\right]上的恒等函数。$ $也给出了梯形不等式的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信