{"title":"SOME BOUNDS FOR THE COMPLEX µCEBYEV FUNCTIONAL OF ABSOLUTELY CONTINUOUS FUNCTIONS","authors":"S. Dragomir","doi":"10.22190/fumi210429015d","DOIUrl":null,"url":null,"abstract":"In this paper we provide several bounds for the modulus of the \\textit{%complex \\v{C}eby\\v{s}ev functional}%\\begin{equation*}C\\left( f,g\\right) :=\\frac{1}{b-a}\\int_{a}^{b}f\\left( t\\right) g\\left(t\\right) dt-\\frac{1}{b-a}\\int_{a}^{b}f\\left( t\\right) dt\\int_{a}^{b}g\\left(t\\right) dt\\end{equation*}%under various assumptions for the integrable functions $f,$ $g:\\left[ a,b%\\right] \\rightarrow \\mathbb{C}$. We show amongst others that, if $f$ and $g$are absolutely continuous on $\\left[ a,b\\right] $ with $f^{\\prime }\\in L_{p}%\\left[ a,b\\right] ,$ $g^{\\prime }\\in L_{q}\\left[ a,b\\right] ,$ $p,$ $q>1$and $\\frac{1}{p}+\\frac{1}{q}=1$, then%\\begin{equation*}\\max \\left\\{ \\left\\vert C\\left( f,g\\right) \\right\\vert ,\\left\\vert C\\left(\\left\\vert f\\right\\vert ,g\\right) \\right\\vert ,\\left\\vert C\\left(f,\\left\\vert g\\right\\vert \\right) \\right\\vert ,\\left\\vert C\\left( \\left\\vertf\\right\\vert ,\\left\\vert g\\right\\vert \\right) \\right\\vert \\right\\}\\end{equation*}%\\begin{equation*}\\leq \\left[ C\\left( \\ell ,F_{\\left\\vert f^{\\prime }\\right\\vert ^{p}}\\right) %\\right] ^{1/p}\\left[ C\\left( \\ell ,F_{\\left\\vert g^{\\prime }\\right\\vert^{q}}\\right) \\right] ^{1/q},\\end{equation*}%where $F_{\\left\\vert h\\right\\vert }:\\left[ a,b\\right] \\rightarrow \\mathbb{[}%0,\\infty )$ is defined by $F_{\\left\\vert h\\right\\vert }\\left( t\\right):=\\int_{a}^{t}$.$\\left\\vert h\\left( t\\right) \\right\\vert dt$ and $\\ell :%\\left[ a,b\\right] \\rightarrow \\left[ a,b\\right] ,$ $\\ell \\left( t\\right) =t$is the identity function on the interval $\\left[ a,b\\right] .$ Applicationsfor the trapezoid inequality are also provided.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"172 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi210429015d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we provide several bounds for the modulus of the \textit{%complex \v{C}eby\v{s}ev functional}%\begin{equation*}C\left( f,g\right) :=\frac{1}{b-a}\int_{a}^{b}f\left( t\right) g\left(t\right) dt-\frac{1}{b-a}\int_{a}^{b}f\left( t\right) dt\int_{a}^{b}g\left(t\right) dt\end{equation*}%under various assumptions for the integrable functions $f,$ $g:\left[ a,b%\right] \rightarrow \mathbb{C}$. We show amongst others that, if $f$ and $g$are absolutely continuous on $\left[ a,b\right] $ with $f^{\prime }\in L_{p}%\left[ a,b\right] ,$ $g^{\prime }\in L_{q}\left[ a,b\right] ,$ $p,$ $q>1$and $\frac{1}{p}+\frac{1}{q}=1$, then%\begin{equation*}\max \left\{ \left\vert C\left( f,g\right) \right\vert ,\left\vert C\left(\left\vert f\right\vert ,g\right) \right\vert ,\left\vert C\left(f,\left\vert g\right\vert \right) \right\vert ,\left\vert C\left( \left\vertf\right\vert ,\left\vert g\right\vert \right) \right\vert \right\}\end{equation*}%\begin{equation*}\leq \left[ C\left( \ell ,F_{\left\vert f^{\prime }\right\vert ^{p}}\right) %\right] ^{1/p}\left[ C\left( \ell ,F_{\left\vert g^{\prime }\right\vert^{q}}\right) \right] ^{1/q},\end{equation*}%where $F_{\left\vert h\right\vert }:\left[ a,b\right] \rightarrow \mathbb{[}%0,\infty )$ is defined by $F_{\left\vert h\right\vert }\left( t\right):=\int_{a}^{t}$.$\left\vert h\left( t\right) \right\vert dt$ and $\ell :%\left[ a,b\right] \rightarrow \left[ a,b\right] ,$ $\ell \left( t\right) =t$is the identity function on the interval $\left[ a,b\right] .$ Applicationsfor the trapezoid inequality are also provided.