EMBEDDING BORDERED RIEMANN SURFACES IN STRONGLY PSEUDOCONVEX DOMAINS

IF 0.2 Q4 MATHEMATICS
F. Forstnerič
{"title":"EMBEDDING BORDERED RIEMANN SURFACES IN STRONGLY PSEUDOCONVEX DOMAINS","authors":"F. Forstnerič","doi":"10.59277/rrmpa.2023.83.94","DOIUrl":null,"url":null,"abstract":"We show that every bordered Riemann surface, M, with smooth boundary bM admits a proper holomorphic map M → Ω into any bounded strongly pseudoconvex domain Ω in Cn, n > 1, extending to a smooth map f : M → Ω which can be chosen an immersion if n ≥ 3 and an embedding if n ≥ 4. Furthermore, f can be chosen to approximate a given holomorphic map M → Ω on compacts in M and interpolate it at finitely many given points in M.","PeriodicalId":45738,"journal":{"name":"REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES","volume":"10 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59277/rrmpa.2023.83.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We show that every bordered Riemann surface, M, with smooth boundary bM admits a proper holomorphic map M → Ω into any bounded strongly pseudoconvex domain Ω in Cn, n > 1, extending to a smooth map f : M → Ω which can be chosen an immersion if n ≥ 3 and an embedding if n ≥ 4. Furthermore, f can be chosen to approximate a given holomorphic map M → Ω on compacts in M and interpolate it at finitely many given points in M.
在强伪凸区域嵌入有边黎曼曲面
我们证明了在Cn, n > 1中,具有光滑边界bM的每一个有边界的Riemann曲面M允许一个适当的全纯映射M→Ω进入任何有界的强伪凸域Ω,并扩展到一个光滑映射f: M→Ω,当n≥3时可以选择浸入,当n≥4时可以选择嵌入。此外,可以选择f来近似M中的紧簇上的给定全纯映射M→Ω,并将其插值到M中的有限多个给定点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信