{"title":"A convergent finite element algorithm for mean curvature flow in arbitrary codimension","authors":"Tim Binz, Bal'azs Kov'acs","doi":"10.4171/ifb/493","DOIUrl":null,"url":null,"abstract":"Optimal-order uniform-in-time $H^1$-norm error estimates are given for semi- and full discretizations of mean curvature flow of surfaces in arbitrarily high codimension. The proposed and studied numerical method is based on a parabolic system coupling the surface flow to evolution equations for the mean curvature vector and for the orthogonal projection onto the tangent space. The algorithm uses evolving surface finite elements and linearly implicit backward difference formulae. This numerical method admits a convergence analysis in the case of finite elements of polynomial degree at least two and backward difference formulae of orders two to five. Numerical experiments in codimension 2 illustrate and complement our theoretical results.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"102 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/493","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Optimal-order uniform-in-time $H^1$-norm error estimates are given for semi- and full discretizations of mean curvature flow of surfaces in arbitrarily high codimension. The proposed and studied numerical method is based on a parabolic system coupling the surface flow to evolution equations for the mean curvature vector and for the orthogonal projection onto the tangent space. The algorithm uses evolving surface finite elements and linearly implicit backward difference formulae. This numerical method admits a convergence analysis in the case of finite elements of polynomial degree at least two and backward difference formulae of orders two to five. Numerical experiments in codimension 2 illustrate and complement our theoretical results.
期刊介绍:
Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.