A Convergence Theorem for Bivariate Exponential Dispersion Models

IF 0.3 Q4 MATHEMATICS
L. Ricci, G. Boggio
{"title":"A Convergence Theorem for Bivariate Exponential Dispersion Models","authors":"L. Ricci, G. Boggio","doi":"10.3844/JMSSP.2019.176.184","DOIUrl":null,"url":null,"abstract":"Multivariate exponential dispersion models (MEDMs) were defined in 2013 by Jorgensen and Martinez. A particular case of MEDM is the bivariate Gamma model; in this article we prove that, under certain conditions, this is a limit distribution for MEDM generated by bivariate regularly varying measures, extending a previous result given by the aforementioned authors for the univariate case. As necessary tools for proving the main result, we use bivariate regularly varying functions and bivariate regularly varying measures; we also state a bivariate version of Tauberian Karamata’s theorems and a particular Karamata representation of bivariate slowly varying functions.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"42 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2019.176.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate exponential dispersion models (MEDMs) were defined in 2013 by Jorgensen and Martinez. A particular case of MEDM is the bivariate Gamma model; in this article we prove that, under certain conditions, this is a limit distribution for MEDM generated by bivariate regularly varying measures, extending a previous result given by the aforementioned authors for the univariate case. As necessary tools for proving the main result, we use bivariate regularly varying functions and bivariate regularly varying measures; we also state a bivariate version of Tauberian Karamata’s theorems and a particular Karamata representation of bivariate slowly varying functions.
二元指数色散模型的收敛定理
多元指数分散模型(MEDMs)由Jorgensen和Martinez于2013年定义。MEDM的一个特例是二元Gamma模型;在本文中,我们证明了在一定条件下,这是二元正则变测度生成的MEDM的极限分布,扩展了前面作者关于单变量情况的结果。作为证明主要结果的必要工具,我们使用了二元正则变函数和二元正则变测度;我们还陈述了陶伯里卡拉马塔定理的一个二元版本,以及二元慢变函数的一个特殊卡拉马塔表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信