Automated scenario generation: toward tailored and optimized military training in virtual environments

Alexander Zook, Stephen Lee-Urban, Mark O. Riedl, Heather K. Holden, R. Sottilare, K. Brawner
{"title":"Automated scenario generation: toward tailored and optimized military training in virtual environments","authors":"Alexander Zook, Stephen Lee-Urban, Mark O. Riedl, Heather K. Holden, R. Sottilare, K. Brawner","doi":"10.1145/2282338.2282371","DOIUrl":null,"url":null,"abstract":"Scenario-based training exemplifies the learning-by-doing approach to human performance improvement. In this paper, we enumerate the advantages of incorporating automated scenario generation technologies into the traditional scenario development pipeline. An automated scenario generator is a system that creates training scenarios from scratch, augmenting human authoring to rapidly develop new scenarios, providing a richer diversity of tailored training opportunities, and delivering training scenarios on demand. We introduce a combinatorial optimization approach to scenario generation to deliver the requisite diversity and quality of scenarios while tailoring the scenarios to a particular learner's needs and abilities. We propose a set of evaluation metrics appropriate to scenario generation technologies and present preliminary evidence for the suitability of our approach compared to other scenario generation approaches.","PeriodicalId":92512,"journal":{"name":"FDG : proceedings of the International Conference on Foundations of Digital Games. International Conference on the Foundations of Digital Games","volume":"1 1","pages":"164-171"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FDG : proceedings of the International Conference on Foundations of Digital Games. International Conference on the Foundations of Digital Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2282338.2282371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

Abstract

Scenario-based training exemplifies the learning-by-doing approach to human performance improvement. In this paper, we enumerate the advantages of incorporating automated scenario generation technologies into the traditional scenario development pipeline. An automated scenario generator is a system that creates training scenarios from scratch, augmenting human authoring to rapidly develop new scenarios, providing a richer diversity of tailored training opportunities, and delivering training scenarios on demand. We introduce a combinatorial optimization approach to scenario generation to deliver the requisite diversity and quality of scenarios while tailoring the scenarios to a particular learner's needs and abilities. We propose a set of evaluation metrics appropriate to scenario generation technologies and present preliminary evidence for the suitability of our approach compared to other scenario generation approaches.
自动化场景生成:在虚拟环境中进行量身定制和优化的军事训练
基于场景的培训举例说明了通过实践学习提高人类绩效的方法。在本文中,我们列举了将自动化场景生成技术合并到传统场景开发管道中的优点。自动化场景生成器是一种从零开始创建训练场景的系统,增强人类创作以快速开发新场景,提供更丰富的定制培训机会,并根据需要交付训练场景。我们引入了一种组合优化方法来生成场景,以提供必要的多样性和高质量的场景,同时根据特定学习者的需求和能力定制场景。我们提出了一套适用于场景生成技术的评估指标,并提供了与其他场景生成方法相比,我们的方法的适用性的初步证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信