Evaluating gyro-viscosity in the Kelvin-Helmholtz instability by kinetic simulations

T. Umeda, Natsuki Yamauchi, Yasutaka Wada, S. Ueno
{"title":"Evaluating gyro-viscosity in the Kelvin-Helmholtz instability by kinetic simulations","authors":"T. Umeda, Natsuki Yamauchi, Yasutaka Wada, S. Ueno","doi":"10.1063/1.4952632","DOIUrl":null,"url":null,"abstract":"In the present paper, the finite-Larmor-radius (gyro-viscous) term [K. V. Roberts and J. B. Taylor, Phys. Rev. Lett. 8, 197–198 (1962)] is evaluated by using a full kinetic Vlasov simulation result of the Kelvin-Helmholtz instability (KHI). The velocity field and the pressure tensor are calculated from the high-resolution data of the velocity distribution functions obtained by the Vlasov simulation, which are used to approximate the Finite-Larmor-Radius (FLR) term according to Roberts and Taylor [Phys. Rev. Lett. 8, 197–198 (1962)]. The direct comparison between the pressure tensor and the FLR term shows an agreement. It is also shown that the anisotropic pressure gradient enhanced the linear growth of the KHI when the inner product between the vorticity of the primary velocity shear layer and the magnetic field is negative, which is consistent with the previous FLR-magnetohydrodynamic simulation result. This result suggests that it is not sufficient for reproducing the kinetic simulation result by fluid simulations to include the FLR term (or the pressure tensor) only in the equation of motion for fluid.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"22 1","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Geoscience Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4952632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In the present paper, the finite-Larmor-radius (gyro-viscous) term [K. V. Roberts and J. B. Taylor, Phys. Rev. Lett. 8, 197–198 (1962)] is evaluated by using a full kinetic Vlasov simulation result of the Kelvin-Helmholtz instability (KHI). The velocity field and the pressure tensor are calculated from the high-resolution data of the velocity distribution functions obtained by the Vlasov simulation, which are used to approximate the Finite-Larmor-Radius (FLR) term according to Roberts and Taylor [Phys. Rev. Lett. 8, 197–198 (1962)]. The direct comparison between the pressure tensor and the FLR term shows an agreement. It is also shown that the anisotropic pressure gradient enhanced the linear growth of the KHI when the inner product between the vorticity of the primary velocity shear layer and the magnetic field is negative, which is consistent with the previous FLR-magnetohydrodynamic simulation result. This result suggests that it is not sufficient for reproducing the kinetic simulation result by fluid simulations to include the FLR term (or the pressure tensor) only in the equation of motion for fluid.
用动力学模拟评价开尔文-亥姆霍兹不稳定性中的陀螺粘度
在本文中,有限larmorr -半径(陀螺粘性)项[K。V.罗伯茨和J. B.泰勒,物理学家。通过使用开尔文-亥姆霍兹不稳定性(KHI)的全动力学Vlasov模拟结果来评估[Rev. Lett. 8, 197-198(1962)]。速度场和压力张量是由Vlasov模拟得到的速度分布函数的高分辨率数据计算得到的,根据Roberts和Taylor [Phys]的理论,这些数据用于近似有限拉摩尔半径(FLR)项。Rev. Lett. 8, 197-198(1962)。压力张量与FLR项的直接比较表明两者是一致的。当主速度剪切层涡度与磁场内积为负时,各向异性压力梯度增强了KHI的线性增长,这与先前flr磁流体动力学模拟结果一致。这一结果表明,仅在流体的运动方程中包含FLR项(或压力张量)是不足以通过流体模拟再现动力学模拟结果的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信