{"title":"The vacuum boundary problem for the spherically symmetric compressible Euler equations with positive density and unbounded entropy","authors":"C. Rickard","doi":"10.1063/5.0037656","DOIUrl":null,"url":null,"abstract":"Global stability of the spherically symmetric nonisentropic compressible Euler equations with positive density around global-in-time background affine solutions is shown in the presence of free vacuum boundaries. Vacuum is achieved despite a non-vanishing density by considering a negatively unbounded entropy and we use a novel weighted energy method whereby the exponential of the entropy will act as a changing weight to handle the degeneracy of the vacuum boundary. Spherical symmetry introduces a coordinate singularity near the origin for which we adapt a method developed for the Euler-Poisson system by Guo, Hadžic and Jang to our problem.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0037656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Global stability of the spherically symmetric nonisentropic compressible Euler equations with positive density around global-in-time background affine solutions is shown in the presence of free vacuum boundaries. Vacuum is achieved despite a non-vanishing density by considering a negatively unbounded entropy and we use a novel weighted energy method whereby the exponential of the entropy will act as a changing weight to handle the degeneracy of the vacuum boundary. Spherical symmetry introduces a coordinate singularity near the origin for which we adapt a method developed for the Euler-Poisson system by Guo, Hadžic and Jang to our problem.