Event Detection using Hierarchical Multi-Aspect Attention

Sneha Mehta, Mohammad Raihanul Islam, H. Rangwala, Naren Ramakrishnan
{"title":"Event Detection using Hierarchical Multi-Aspect Attention","authors":"Sneha Mehta, Mohammad Raihanul Islam, H. Rangwala, Naren Ramakrishnan","doi":"10.1145/3308558.3313659","DOIUrl":null,"url":null,"abstract":"Classical event encoding and extraction methods rely on fixed dictionaries of keywords and templates or require ground truth labels for phrase/sentences. This hinders widespread application of information encoding approaches to large-scale free form (unstructured) text available on the web. Event encoding can be viewed as a hierarchical task where the coarser level task is event detection, i.e., identification of documents containing a specific event, and where the fine-grained task is one of event encoding, i.e., identifying key phrases, key sentences. Hierarchical models with attention seem like a natural choice for this problem, given their ability to differentially attend to more or less important features when constructing document representations. In this work we present a novel factorized bilinear multi-aspect attention mechanism (FBMA) that attends to different aspects of text while constructing its representation. We find that our approach outperforms state-of-the-art baselines for detecting civil unrest, military action, and non-state actor events from corpora in two different languages.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Classical event encoding and extraction methods rely on fixed dictionaries of keywords and templates or require ground truth labels for phrase/sentences. This hinders widespread application of information encoding approaches to large-scale free form (unstructured) text available on the web. Event encoding can be viewed as a hierarchical task where the coarser level task is event detection, i.e., identification of documents containing a specific event, and where the fine-grained task is one of event encoding, i.e., identifying key phrases, key sentences. Hierarchical models with attention seem like a natural choice for this problem, given their ability to differentially attend to more or less important features when constructing document representations. In this work we present a novel factorized bilinear multi-aspect attention mechanism (FBMA) that attends to different aspects of text while constructing its representation. We find that our approach outperforms state-of-the-art baselines for detecting civil unrest, military action, and non-state actor events from corpora in two different languages.
基于分层多面向注意的事件检测
经典的事件编码和提取方法依赖于固定的关键字和模板字典,或者需要为短语/句子提供基本的真值标签。这阻碍了信息编码方法在网络上大规模自由格式(非结构化)文本中的广泛应用。事件编码可以看作是一个分层任务,其中粗层次任务是事件检测,即识别包含特定事件的文档,而细粒度任务是事件编码之一,即识别关键短语、关键句子。考虑到它们在构建文档表示时能够不同地关注或多或少重要的特征,具有注意力的分层模型似乎是解决这个问题的自然选择。在这项工作中,我们提出了一种新的分解双线性多方面注意机制(FBMA),该机制在构建文本表征的同时关注文本的不同方面。我们发现,在从两种不同语言的语料库中检测内乱、军事行动和非国家行为者事件方面,我们的方法优于最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信